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R you being foreclosed?
Oliver Latham and Chara Tzanetaki

Charles River Associates, London, UK

ABSTRACT
We draw parallels between the pandemic and foreclosure in network industries
by applying “Susceptible, Infected, Recovered” (SIR) modelling to an antitrust
setting. We consider a digital service seeking to grow into an addressable
market occupied by an incumbent platform. The entrant can grow
organically, but amassing more users allows it to spread faster as users invite
friends or generate content increasing its attractiveness. We consider the
impact of the incumbent taking steps (e.g. reducing interoperability) to make
the entrant “less infectious” with three main implications for antitrust policy:
conduct may have large effects even if the targeted service continues to
grow; conduct is most effective when applied against nascent services before
they can harness netwrok effects; and conduct can have non-linear effects,
with the most “viral” services continuing to grow while others are eliminated.
Each result has parallels with the experience of the pandemic and
implications for innovation incentives.

ARTICLE HISTORY Received 6 August 2021; Accepted 2 November 2021
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1. Introduction

For most antitrust practitioners the two most common conversation
topics over the last 18 months have surely been “COVID-19” and “Big
Tech”. This paper argues these topics are more closely related than
they might seem. As well as the obvious observation that the pandemic
has benefited tech firms by shifting a greater share of communication,
shopping, and entertainment online, there is a further connection: the
same mathematical concepts that have become familiar in the context
of the pandemic: “R-rates”, “flattening the curve”, and “herd immunity”
can also tell us something about antitrust theories of harm and foreclo-
sure in industries subject to network effects.
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We discuss how the “Susceptible, Infected, Recovered” (SIR) models
used to understand epidemiological spread can be adapted to consider
the case of a dominant “gatekeeper” platform seeking to prevent the
emergence of a new entrant in a market with strong network effects.
This mirrors the increasing volume of research applying these models
to economic issues.

We build a model in which a new entrant app is seeking to penetrate
an addressable market of consumers who already make use of the services
of an incumbent platform. We assume that this new entrant can grow to
some extent organically, but that amassing more users also allows it to
spread more effectively (e.g. because its current users can send invites
to their friends or will generate content which makes the service more
attractive). We assume also that the incumbent platform can take steps
(e.g. reducing interoperability or reducing users’ ability to share
content or invite their friends) which make the rival service “less
infectious”.

This model set-up endogenously creates an “S-curve” dynamic in
which growth of the service first accelerates (more users means more
scope for invites/content sharing, drawing in more users more quickly)
and then slows (as the service grows it starts to saturate the addressable
market meaning less scope to acquire new users). This S-curve is analo-
gous to the growth of a viral pandemic where growth accelerates and then
slows as the population achieves “herd immunity”.

The model has three main takeaways:

. First, it shows how conduct can have large growth effects relative to a
counterfactual even while a service continues to grow in absolute terms.
There are parallels here with the control of a virus where a public
health intervention can “flatten the curve” and significantly slow the
spread of an infection while still failing to stop its spread entirely.
This implies that empirical analysis of effects should look for growth
effects as well as level effects and should be “on the lookout” for
conduct which prevents services from moving onto the “steep” part
of the S-curve.

. Second, it shows how foreclosing conduct is likely to be particularly
effective when applied early in a service’s life before it has amassed a
user base and moved onto the steep part of the S-curve. This is impor-
tant as it means that conduct might be effective at preventing rivals’
spread into new geographies or product lines even if it is unable to
remove the service entirely from those markets where it is already

2 O. LATHAM AND C. TZANETAKI



established. It also implies that conduct which is only partially effective
when applied to already established entrants may be effective at redu-
cing entry and funding elsewhere as potential entrants will recognize
that they will be unsuccessful if subjected to said conduct before
they “get off the ground”.

. Third, it illustrates how conduct can have non-linear effects: a particu-
larly “viral” service might be able to resist foreclosing conduct and
continue to grow (albeit at a lower rate relative to a counterfactual
without the conduct) while a less inherently fast-growing service
may find the conduct is sufficient to stop it in its tracks even if it
would have otherwise grown successfully. There are parallels here
with epidemiology where a virus will continue to grow exponentially
as long as its R rate is above 1, but will be suppressed if it is reduced
below this level. There is an analogy also with the emergence of
more infectious variants of COVID-19 that have been able to spread
notwithstanding restrictions which had proven sufficient to suppress
the original virus.

The rest of the paper is structured as follows. Section 2 provides back-
ground on relevant antitrust cases and the attention given to the absolute
level of targeted firms’ growth as a measure of anticompetitive effects.
Section 3 provides background on SIR models and their growing use in
the economic literature. Section 4 presents our SIR model applied to fore-
closure theories of harm in the technology space. Section 5 presents some
key implications of our model. Section 6 discusses the implications for
antitrust policy. Section 7 concludes.

2. Background on relevant antitrust cases

Almost all of the concerns around exclusionary abuses in the technology
space share two characteristics: (i) some kind of strategy that impedes
rivals’ ability to acquire customers in absolute or relative terms,
whether that be removing them from search results, refusing to pre-
install their apps, restricting access to APIs and/or data or otherwise
reducing inter-operability; and (ii) an important role for scale and/or
network effects which means that this reduction in customer acquisition
can be anticipated to materially hinder the development of rivals or even
“tip” the market to monopoly. These properties are shared in, for
example, the original Microsoft cases; the Google Search, Android and
Ad Tech cases; the FTC’s case against Facebook; as well as some of the
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cases brought against Amazon and Apple.1 Typically, but not always, the
accusation is that the platform is engaged in a “dynamic leveraging” strat-
egy that is either defensive in nature (forestalling a potential competitive
threat) or offensive (“swinging” market power into a new market).2

These sorts of theories of harm are most blatant when there is evidence
of wholesale market exit by targeted competitors and there are “bodies on
the floor” as a result of the conduct.3 When this is not the case, and the
impacted firms continue to grow in absolute terms, it is natural for
accused firms to argue this is proof against foreclosing effects.4

In turn, the natural counter to this is that we do not necessarily care
only about absolute reductions in an impacted firm’s volume of
business, but rather about the impact relative to the counterfactual.
While in mature industries the two are likely to go hand in hand, in
new, fast-growing industries it may be that impacted rivals continue
to grow in absolute terms, at least for a time, while ceding market
share and expanding less than they would have done in the counterfac-
tual. In a world of network effects and dynamic competition this could
result in rivals falling behind over time, ultimately resulting in anticom-
petitive effects.

The question though is how to operationalize these concerns. This
paper argues that “Susceptible, Infected, Recovered” (SIR) models
similar to those used in modelling epidemiological spread can be used
to estimate counterfactual growth paths and shed light on potential fore-
closing effects over the long run.

1See, for example, USA v. Microsoft Corporation, 253 F.3d 34 (D.C. Cir. 2001); EC cases 39740 ‘Google
Search (Shopping)’; 40099 ‘Google Android’; FTC v. Facebook, Inc FTC MATTER/FILE NUMBER: 191
0134. See also the EC’s press releases in respect of investigations into Apple and Amazon.

2The classic references for such dynamic foreclosure theories are DW Carlton and M Waldman, ‘The Stra-
tegic Use of Tying to Preserve and Create Market Power in Evolving Industries’ (2002) 33(2) The RAND
Journal of Economics 194 and JP Choi and C Stefanadis, ‘Tying, Investment, and the Dynamic Leverage
Theory’ (2001) 32(1) The RAND Journal of Economics 52. For a discussion in the context of tech plat-
forms see S Athey and FS Morton, ‘Platform Annexation’ (2021) SIEPR Working Paper 21-015. These and
many other papers show why foreclosure theories of harm in dynamic technology markets need not
fall-foul of the “One Monopoly Profit” critique which argues that a monopolist will not want to use its
market power to colonize adjacent/complementary markets. For a short summary, see J Baker, ‘Note
on “Single Monopoly Profit” Theory’ (2014).

3For example, the European Commission’s Google Shopping decision pointed to falls in traffic for price
comparison sites of circa 80 to 92% while Google’s own service saw traffic increase 14–45 fold. https://
ec.europa.eu/commission/presscorner/detail/en/IP_17_1784.

4For an example of such commentary see: https://chillingcompetition.com/2021/05/03/the-commission-
sends-an-so-to-apple-common-carrier-antitrust-picks-up-speed/. Similarly, Google’s reaction to the
shopping decision argues that the continued growth of eBay and Amazon provides evidence
against anticompetitive foreclosure https://blog.google/around-the-globe/google-europe/european-
commission-decision-shopping-google-story/.
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3. Background on SIR models and their use in epidemiology
and economics

It is not a coincidence that the term “going viral” has been used to
describe the growth of digital apps, services and content. Just as an infec-
tious disease spreads through a population as long as each newly infected
person infects at least one more person, digital services can rely on similar
dynamics by encouraging users to share content or invite new users or by
relying on the fact that new users generate network effects (e.g. by gener-
ating the content of interest to others or encouraging the development of
a surrounding ecosystem) that draw more users in. Both infectious dis-
eases and digital services can take advantage of exponential growth to
spread at dramatic rates (Figure 1).5

The same mathematical processes can therefore be used to understand
these quite different applications. Just as the spread of a virus is deter-
mined by the level of infectiousness as measured by the “basic reproduc-
tive number”, R, the growth of a service will be governed by the degree to
which users share content or invite new users, and the extent to which
users who try the service “convert” into long term users. Similarly, just
as the growth of a virus is ultimately limited by the size of the susceptible
population, and growth will tend to slow as the number of uninfected
individuals declines and the population achieves “herd immunity”, the
growth of a new digital service is bound by its “addressable market”
and will see its growth slow as this becomes saturated and the number
of potential new users to try the service declines.6

Epidemiologists have used the SIR approach to model viral spread.
These models split the population between those who are uninfected
hence “Susceptible”, those who are “Infected” and potentially infec-
tious, and those who are “Recovered” or otherwise immune. They
then make assumptions (e.g. about the extent to which individuals
interact, the extent interactions result in infection, and so on) to
model the spread of an infection through a population. These models
have traditionally been used to study the spread of viruses

5We note that the term “exponential growth” is often used imprecisely as a synonym for “fast growth”.
This is incorrect: exponential growth refers to a process which grows in a compound fashion (e.g. by
increasing at a constant percentage rate over time). Technically we refer here to exponential growth
with saturation (e.g. a virus or digital service spreading over a fixed population), which is described by
the logistic growth function exhibiting S-curve dynamics where an exponential stage of increasing
growth is followed by an inflection point followed by decreasing growth.

6In light of this, strategy writers have emphasized the importance of “jumping the S-curve” (i.e. the
importance of firms ensuring that they enter new product lines before their existing ones reach sat-
uration point). See, for example, PF Nunes and T Breene, ‘Jumping the S-Curve-How to Beat the Growth
Cycle, Get on Top and Stay There’ Harvard Business Review Press (2011).
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(e.g. influenza,7 dengue fever,8 SARS9 and COVID-1910). However, they
are increasingly being used in non-epidemiological applications to study
the spread of computer viruses11 or financial contagion12 as well as the
diffusion of marketing, ideas/information and influence in social net-
works.13 More recently, the COVID-19 epidemic has led to a further
resurgence of the SIR model in seminal work on virus network
diffusion where economists have expanded on classical epidemiology
work to improve our understanding of health policy decisions and

Figure 1. The power of exponential growth. Source: https://www.dw.com/en/corona-
confusion-how-to-make-sense-of-the-numbers-and-terminology/a-52825433.

7See e.g. SAA Karim and R Razali, ‘A Proposed Mathematical Model of Influenza A, H1N1 for Malaysia’
(2011) 11 Journal of Applied Sciences 1457.

8For example, HS Rodrigues, MTT Monteiro and DFM Torres, ‘Dengue in Cape Verde: Vector Control and
Vaccination’ in JP Bourguignon and others (eds), Dynamics, Games and Science – International Confer-
ence and Advanced School Planet Earth DGS II (Springer International Publishing Switzerland 2015),
593–605.

9See e.g. T Mkhatshwa and A Mummert, ‘Modeling Super-Spreading Events for Infectious Diseases: Case
Study SARS’ (2011) 41 IAENG International Journal of Applied Mathematics 2.

10C Pizzuti and others, ‘Network-Based Prediction of COVID-19 Epidemic Spreading in Italy’ (2020) 5
Applied Network Science 91.

11For a review of the literature see HS Rodrigues, ‘Application of SIR Epidemiological Model: New Trends’
(2016) 10 International Journal of Applied Mathematics and Informatics 92.

12Daron Acemoglu, Asuman Ozdaglar and Alireza Tahbaz-Salehi, ‘Systemic Risk and Stability in Financial
Networks’ (2015) 105(2) American Economic Review, American Economic Association 564.

13For specific examples of recent academic publications see e.g. S Ma, L Feng and CH Lai, ‘Mechanistic
Modelling of Viral Spreading on Empirical Social Network and Popularity Prediction’ (2018) 8 Scientific
Reports 13126, W Wang and WN Street, ‘Modeling and Maximizing Influence Diffusion in Social Net-
works for Viral Marketing’ (2018) 3 Applied Network Science 6, and P Kumar and A Sinha, ‘Information
Diffusion Modeling and Analysis for Socially Interacting Networks’ (2021) 11 Social Network Analysis
and Mining 11.
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individual strategic decision making during an epidemic.14 For example,
Toxvaerd studies equilibrium social distancing using an SIR-based
model,15 McAdams develops a Nash-equilibrium extension of the SIR
model to study strategic behaviour,16 and Acemoglu et al. study
optimal targeted lockdowns in a multi-group SIR setup.17

To our knowledge, no one to date has used an SIR model in an anti-
trust context to model foreclosing effects and this is the contribution of
this paper.

4. Using an SIR model to analyze foreclosure

Consider a simple model of “diffusion” of a new app or service “A” that
relies on an incumbent dominant platform “P” for distribution. We
assume a fixed population of agents W18 that represent A’s addressable
market and, as is standard in an SIR model, we distinguish the total
addressable market into three groups: those who are already users of A
(corresponding to the infected population); those who are yet to use A
(the susceptible population) and those who have used, and subsequently
abandoned it (the recovered population). As is intuitive in the case of an
app or other digital service, we assume that users who abandon it (i.e.
become inactive) can be induced to reactivate their account and are
hence not immune to “re-infection”. In order to capture the typical scen-
ario in an exclusionary abuse case, we assume that the entrant relies on an
incumbent platforms for distribution. Formally, we assume that a large
share of A’s addressable market are already users of P.

User growth dynamics without intervention by P. To model the
dynamics of A’s growth we allow for some susceptible users to discover
the service spontaneously at a fixed rate �p; and for some proportion of
infected users to spontaneously stop using the service. We further
allow for current users of A to induce their connections to use the
service. We capture this by allowing current users of A to recommend
or “share” the app with their connections which, with some probability,

14For more detail, see Christopher Avery and others ‘An Economist’s Guide to Epidemiology Models of
Infectious Disease’ (2020) 34(4) Journal of Economic Perspectives 79.

15F Toxvaerd, ‘Equilibrium Social Distancing’ (2020) Cambridge-INET Working Paper Series No: 2020/08,
Cambridge Working Papers in Economics 2021, Faculty of Economics, University of Cambridge.

16David McAdams, ‘Nash SIR: An Economic-Epidemiological Model of Strategic Behavior During a Viral
Epidemic’ (2020) Covid Economics (forthcoming).

17Daron Acemoglu and others, ‘Optimal Targeted Lockdowns in a Multi-Group SIR Model’ (2020) NBER
Working Papers 27102, National Bureau of Economic Research, Inc.

18Bold capital letters will signify sets whereas the respective non-bold capital letter will be the size of the
set.
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induces them to become users of A. This could reflect direct network
effects (e.g. sharing of content or sending of messages to one’s friends
or family) or indirect network effects (e.g. if users of A develop user-gen-
erated content which makes the value of the app higher for developers
who invest in additional features that then in turn make Amore attractive
to susceptible users).

The probability of a new user joining equals the probability that they
spontaneously join plus the probability that they “accept” an invite sent
by a current user to them. The higher the number of users, the higher
the total number of invites that each susceptible user receives hence
the lower the probability that they reject all of them and do not join
the app.

Therefore, in each period t each susceptible agent has a, symmetric
across agents, total probability of joining the app equal to:

pt = �p+ (1− �p)q(zWA
t ) = �p+ (1− �p)q(zWA

t )

where q(zWA
t ) is the probability with which a susceptible agent becomes a

new user of the app, and z is the (assumed fixed) probability with which
each susceptible agent receives one invite from each current user of the
app, hence zWA

t is the average number of invitations received by each
susceptible agent.

We define t as the probability that a susceptible agent accepts an invite
they receive. For simplicity, we assume that this probability remains fixed
in time (and independent of how many invites have been rejected). The
probability that a susceptible individual who has not joined the app spon-
taneously accepts an invite among the ones received is hence given by:

q(zWA
t ) = (1− (1− t)zW

A
t )

We next assume that the app also faces an exogenous churn rate19 i.e.
that a positive share c of users are removed from the infected/infectious
population every period. This could refer to users who do not really like
the app so stop signing in and become “ghost” users with zero content
viewing, creating and sharing activity.

19If we assume that there is zero churn in the app i.e. once a susceptible user becomes a user of the app
they never quit, this amounts to zero removal rate from the infected population and, in the absence of
foreclosure conduct (e.g. blocking), zero removal rate from the infectious population as well. Under this
assumption, it will be easy to check that the conduct can harm the app by reducing its growth only
down to the minimum growth rate that is solely due to the spontaneous probability of a new user
joining. If this exogenous probability is positive then the app remains an “epidemic” besides P’s
conduct.
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We assume churned users are removed from the infected/infectious
population but that they re-enter the susceptible population so that
they can re-join with probability pt+1 in the next time period. We
assume that users who have newly joined stay active for at least one
period before considering de-activating,20 and that no one can be
removed from the population or become immune to re-joining.

At any time period t, we then have a fully connected network with the
agent population divided into two compartments, a population of WA

t

infected/infectious agents:21

WA
t = (1− c)WA

t−1 + pt−1W
N
t−1

= (1− c)WA
t−1 + [�p+ (1− �p)(1− (1− t)zW

A
t−1 )]WN

t−1

and a population of WN
t susceptible agents:

WN
t = WN

t−1 − pt−1W
N
t−1 + cWA

t−1

= (1− �p− (1− �p)(1− (1− t)zW
A
t−1 ))WN

t−1 + cWA
t−1

with

WA
t + WN

t = W

This set up endogenously introduces an “S-curve” dynamic: when the
population of A users is very small, growth will come only from “spon-
taneous” discovery of the service. As more users are added, they will
find that there is a large user base of susceptible users and each user of
A will interact with many susceptible users, resulting in accelerating
growth.22 However, as the user base of A increases, the volume of users
will grow relative to the size of the remaining addressable market and
each A user will interact with fewer individuals who are not already
users of the service and hence growth through this channel will slow.
Thus, growth will initially accelerate, but then slow: the classic “S-curve”.

Allowing for intervention by P. To model potential exclusionary
conduct we allow for P to engage in activities which weaken the
“spread” of A between current users and susceptible users (i.e. we
assume that, as a result of P’s conduct, in each time period a share (e.g.

20This is a simplifying but reasonable assumption. According to this, newly infected or spontaneously
joining users will be infected for the full next period but then may leave with probability c.

21Our assumption that new infection cases only become infectious to others from the next time period
onwards is consistent with the incubation period in epidemiology.

22In principle, there are even more feedback network effects of the user base growth: for example, one
could allow for a larger user base to contribute to more user-generated content or reputational effects
which increased the spontaneous rate of growth.
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50%) of the infected population is not infectious). This could capture a
range of factors such as reducing the ability of users of A to send invites
or content shares through P’s platform or otherwise reducing interoper-
ability of the product (e.g. as Facebook is alleged to have done by the
FTC) or by reducing the visibility of A’s service (as is the accusation
against Google).

We thereby assume that a share s of the app’s users are no longer able
to share content/invites with non-users or, in a more general context,
prevented from contributing to new user acquisition through P’s
conduct.23 This captures the fact that, while all app users may be
affected by P’s conduct, the frictions imposed are not perfect or there
may be some workarounds to overcome obstacles imposed by the
conduct. The set of “Blocked users” who are prevented from contributing
to user acquisition remain part of the infected population but will not be
able to recruit new app users through their activity. Blocked users can
find/use workarounds in the next period but overall a constant share of
the infected population is blocked and not infectious in each time period.

In addition, we assume that a share of the app’s users do not quit
“spontaneously” but their quitting is induced by P’s conduct. This
allows us to model the scenario when a share k of the blocked users
WAB

t−1 quit the app (in the broad sense of inactivity described previously)
due to the fact that they could no longer interact with non-app users in P.
We will assume that users need to be blocked for at least one period
before considering leaving due to blocking.24 This could reflect the fact
that P is for these users their primary social network so they do not
care for any content sharing/creation activity if it cannot be integrated
in their P activity, and/or that these users respond to blocking by repla-
cing the app with another app, such as one owned/favoured by P, which is
not subject to the conduct.

The remaining agents still remain part of the app i.e. the fact they
cannot share content or the reduced interoperability and interaction
with users of P does not induce them to quit the app. They will, therefore,
be part of the infected population but will be blocked instead of infectious
since they will not be able to recruit new app users through their activity.

23The corollary in an epidemiological model is that some app users are still “infected” but are no longer
“infectious”.

24This is a simplifying but reasonable assumption. According to this, newly blocked users will be infected
for the full period but then may leave with probability k as a result of being blocked and hence dis-
satisfied with the app.
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At any time period t, we will then have a fully connected network of
agents in three groups: WAB

t blocked app users; WAI
t infectious agents;

and WN
t susceptible agents:

WAI
t = (1− s)(1− c)(1− k)WAB

t−1 + (1− s)(1− c)WAI
t−1

+ (1− s)[�p+ (1− �p)(1− (1− t)zW
AI
t−1 )]WN

t−1

WAB
t = s(1− c)(1− k)WAB

t−1 + s(1− c)WAI
t−1

+ s[�p+ (1− �p)(1− (1− t)zW
AI
t−1 )]WN

t−1

WN
t = [1− �p− (1− �p)(1− (1− t)zW

AI
t−1 )]WN

t−1 + cWAI
t−1

+ (1− k)cWAB
t−1 + kWAB

t−1

WAI
t + WAB

t + WN
t = W

This system of equations determines the growth path and performance
of A. We now consider some implications of the model and the lessons
for analysis of potential anticompetitive conduct.

5. Implications of the model

While deliberately stylized, the SIR model set out above25 presents a
number of important qualitative implications for the assessment of
potential exclusionary conduct.

First, SIR models underline how conduct can have large effects relative
to a counterfactual even if the entrant continued to grow in absolute
terms. This is illustrated in Figure 2 which simulates the model to gener-
ate a path for A’s userbase under illustrative parameter values allowing
for P to begin its conduct after 18 months.26 One can see that the
entrant app in the counterfactual without any intervention from P
achieves a user base of 75 m over an example addressable market of P
users of 100 m. However, with P’s conduct (which, as above, could
reflect degradation of interoperability or some other strategy to suppress
the spread of A) growth of A is limited to a more linear, instead of expo-
nential trajectory, where it achieves a user base of less than 30 m. There-
fore, the observation of “healthy” growth for the entrant service can mask

25Further detail on the model is presented in the mathematical Appendix.
26The parameters used for the paper’s simulation illustrations are: W = 100,000,000, �p = 0.0001,
t = 0.005, z = 0.000001, s = 0.45, c = 0.1, k = 0.12, a life-span of 36 months and various times
of introducing the conduct as indicated.
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significant effects of P’s conduct without an appropriate counterfactual
analysis.

There are parallels here with the experience during the pandemic: sup-
pression strategies (e.g. mask wearing or vaccinations) will reduce the
reproductive number but may not do so sufficiently to prevent continued
growth. In these circumstances, the impact will be to “flatten the curve”,
slowing growth without necessarily suppressing it entirely.

As well as slowing its trajectory, the conduct can also causeA to “max out”
its userbase at a lower level. In ourmodel, the entrantwill continue to grow as
long as the volume of new users due to organic growth and growth via
network interaction exceeds the loss of users due to both exogenous churn
and churn due to the conduct (this is analogous to a virus always growing
as long as the R value is greater than 1). Because the conduct reduces the
rate of growth and increases the rate of churn it not only slows the entrants’
growthbut canalso lead to the steady state level ofuserbasebeing lower than it
would be without the conduct. Indeed, for some parameter values, the
conduct can cause an app that would otherwise have penetrated the entire
addressable market to top out at a substantially lower level.27

Figure 2. The conduct leads to a significantly lower user base compared to the
counterfactual.

27In a richer model one would expect further mechanisms by which this slower growth could result in a
permanent failure to reach the addressable market. For example, our model abstracts away from com-
petition dynamics, while in a richer model one could allow for the dominant platform having its own
competing service which could be expected to use the conduct to grow faster than the entrant and
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Second, the illustration above shows how suppressive conduct can
prevent the emergence of an “S-curve” dynamic (in the Figure above,
the entrant would have grown in an exponential fashion with accelerating
growth without the conduct, but grows more linearly under the conduct).
This is important because it means a simple “before and after” analysis of
growth rates will understate the impact of the conduct: one might see
what looks like a modest slowing in growth, but fail to recognize that
the targeted firm was on the cusp of accelerating growth due to S-curve
dynamics.

Third, SIR models introduce important non-linearities in the effect of
the conduct. More “viral” and intrinsically fast growing-services continue
to grow (albeit at a slower rate) while services which are less naturally fast
growing may be fatally harmed.

This is illustrated in Figure 3 where we look at the same conduct
(which we assume results in approximately 50% of users being unable
to contribute to new user acquisition and a 10% increase in churn), intro-
duced at the same time (6 months into the life of the app), but applied to
apps with different propensities for growth absent the conduct (which we
capture by taking three different values for the “organic” churn rate). For
each of these three values the solid line indicates outcomes with the
conduct and the dotted line without the conduct.

We observe that, absent the conduct, all three apps would have grown
effectively (the dotted lines all show growth and an S-curve dynamic).
However, only the “most viral” app (the blue line) is able to survive the
conduct (albeit still growing at a slower rate) with the two “less viral”
apps flatlining. Again there are parallels with experiences within the pan-
demic: by some estimates, the transmissibility of Covid-19 has dramati-
cally increased over the course of the pandemic with the original virus
identified in Wuhan having an R of 2.5 and the Delta variant that
emerged in India having an R as high as 8.28 Thus, interventions which
reduced transmission by just over 60% would be sufficient to reduce R
below 1 in the first case and result in the infection “fizzling out”, but
this same intervention would only achieve slower exponential growth
in the second case.

Fourth, the model illustrates the importance of early intervention: the
network effects in our model mean that a service which has just started
out will be “further down the S-curve” and growing at a slower rate

ultimately prevail in the long run. Alternatively, slower growth could result in reduced funding and
investment, and hence less ability to expand.

28https://www.bbc.co.uk/news/health-57431420.

EUROPEAN COMPETITION JOURNAL 13

https://www.bbc.co.uk/news/health-57431420


than one which has amassed a user base. As such, a service which is still in
its infancy is inherently easier to suppress than one which has been oper-
ating for some time. This is illustrated in Figure 4 which calibrates the
model for exactly the same parameter values, changing only the
assumed date that P begins its conduct to either 2, 10, 14, or 18
months after the launch of the app. One sees that, while the conduct
always reduces the growth of the targeted firm, the impact is more
severe the earlier the conduct is initiated. We observe that, if the
conduct is introduced soon after the app’s entry, it is particularly detri-
mental with its userbase growth flatlining. In the competitive innovative
context of technology markets, achieving early traction is key for acquir-
ing funding and hence determining an app’s success or failure. Crucially,
even an app that would otherwise achieve exponential growth, could be
potentially killed due to early exclusionary conduct preventing user
acquisition.29

Figure 3. Early blocking can kill an innovator whose “viral” or other quality features lead
to less user loyalty.

29This is consistent with allegations against Facebook that it used acquired company Onavo to collect
users’ app usage and mobile browsing data that would allow it to identify very early upticks in the
growth of rivals, much earlier than these signs would be visible to investors or other third party.
This issue is raised in the FTC’s amended complaint against Facebook. See: https://www.ftc.gov/
system/files/documents/cases/ecf_75-1_ftc_v_facebook_public_redacted_fac.pdf and https://
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6. Takeaways for antitrust policy

In light of the analysis above, we see three main takeaways:
First, the model provides a formal underpinning for why, at least in

industries with strong network effects, the emphasis should be on asses-
sing performance vs. a counterfactual rather than just considering absol-
ute effects. This should not be a license for speculation, but means that
empirical work should be looking not just at “level effects” (i.e. evidence
that the conduct caused targeted firms’ volumes to decline in absolute
terms), but also “first derivative” effects (whether the conduct resulted
in noticeable declines in growth). Further, when looking at growth
effects one should be on the lookout for evidence of S-curve effects
which mean that growth might have been expected to accelerate in the
counterfactual.

Other elements of an empirical “roadmap” would be to consider cali-
brating an SIR model like the one presented above to determine whether
the impugned conduct could plausibly suppress growth to a significant
enough extent to result in competitive harm. Of course, any such analysis
should consider also alternative explanations: a targeted firm might slow
because of deficiencies in its product or entry by other players. Ideally,

Figure 4. The earlier the conduct the larger the impact with nascent firm’s flatlining.

techcrunch.com/2018/12/05/seized-cache-of-facebook-docs-raise-competition-and-consent-
questions/.
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one would hope to use econometric techniques to unpack the effect of the
impugned conduct from these other considerations.

Second, the fact that exclusionary conduct is likely to be most effective
in its early stages and when targeted at less “viral” services implies that
conduct by dominant firms might prove effective at preventing the
expansion of targeted services into new markets while allowing them to
survive in places where they had already established a user base.30 This
indicates that a potential test for the impact of the conduct is to
compare the performance of a service across sub-markets where it was
already established vs. those it was not.

Third, when it comes to conducts which are applied by a platform
across a wide range of applications, the model illustrates why one
should be careful in interpreting the presence of some “winners” in par-
ticular applications. It may be that these winners have features which
make them particularly “infectious” and more likely to only see their
curve flattened by the conduct rather than experiencing outright foreclo-
sure. As such, for each such success story there may be other entrants
who failed or did not receive funding to enter in the first place. The
model, therefore, has parallels with a growing literature and policy
debate exploring whether there is a “kill zone” around major platforms.31

7. Conclusions

The same mathematical processes that govern the spread of infectious
diseases have parallels with the emergence and growth of products exhi-
biting network effects. Such products and services similarly lend them-
selves to rapid exponential growth and to S-curve dynamics whereby
growth first accelerates as the service gains users and can leverage
network effects, and then slows once the addressable market is penetrated
and the population achieves something akin to “herd immunity”. As
such, the same “SIR models” used in epidemiology can be usefully
applied in an antitrust context.

Taking this analogy further, a dominant firm seeking to stop the
spread of potentially competing products faces a similar problem to a
government seeking to suppress a new virus and can be expected to try

30A candidate example would be Yelp (a long-standing complainant against Google who the authors
have worked with). While Yelp continues to operate a viable business in those parts of the US
where it first launched it has ceased attempts to expand internationally: https://techcrunch.com/
2016/11/03/yelp-lays-off-175-in-sales-and-marketing-as-it-retrenches-internationally/.

31See for example, Sai Krishna Kamepalli and others, ‘Kill Zone’ (2021) NBER Working Paper No. w27146.

16 O. LATHAM AND C. TZANETAKI

https://techcrunch.com/2016/11/03/yelp-lays-off-175-in-sales-and-marketing-as-it-retrenches-internationally/
https://techcrunch.com/2016/11/03/yelp-lays-off-175-in-sales-and-marketing-as-it-retrenches-internationally/


and reduce transmissibility and to adopt policies to, at the very least,
“flatten the curve”, if it cannot achieve outright suppression. The key con-
trast, of course, is that, unlike a pandemic, social welfare is likely to
benefit from allowing this spread to occur.

Applying SIR models in this context delivers some important take-
aways for the assessment of potentially anticompetitive conduct. First,
they show how, in fast-growing industries, it is all the more important
to consider impacts vs. a counterfactual rather than absolute effects on
output or revenues. Second, they illustrate how conduct can be particu-
larly effective when applied to firms who are in their infancy and have not
yet reached the point at which S-curve dynamics “kick in”. Third, they
provide a further rationale to focus on long-run innovation and entry
incentives.
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Appendix. Mathematical derivations

We assume a fixed population of agents W32 that represent A’s addressable market.
For simplicity, we assume that the addressable market coincides with P’s user base
and that this network is fully connected i.e. that all agents are connected and can
hence communicate with everyone else.33 At any given point in time, A’s addressable
market can be divided into two compartments:

. WA
t : the agents who are already using A. This compartment can be further broken

down into two sub-compartments:
o WAP

t those who are users of both A and P, and
o WAN

t those who are users of A but not of P.
. WN

t : the agents who are not users of A. This compartment can be further broken
down into two sub-compartments:
o WNP

t those who are users of P but not of A, and
o WNN

t those who are users neither of A nor P.

In antitrust cases where P has a strong market position, we would expect theWNN
t

and WAN
t groups to be small and most of the addressable market of A to be existing

users of P. To account for this and simplify the derivations we assume that
WNN

t = WAN
t = ∅ hence WAP

t ; WA
t and WNP

t ; WN
t .

We further assume that, in each discrete time period, an exogenously
determined share of A users is “removed” i.e. they stop using it and/or

32Bold capital letters will signify sets whereas the respective non-bold capital letter will be the size of the
set.

33This is in line with the baseline SIR epidemiology model which assumes a well-mixed population
meaning that any infected agent has a probability of contacting any susceptible agent that is well
approximated by the average.
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deactivate their account so move from the infected back to the susceptible
population. This amounts to assuming that although the users “recover” they
never become immune i.e. they can re-join the infected population in the next
period.

All agents who are already users of the app can use P to interact with their con-
nections (e.g. by sharing content or invites) both inWA

t and inWN
t . Interacting with

someone in WA
t is innocuous as the recipient is already “infected”.34 We will, there-

fore, limit our attention to the interaction between app users and those who are, at
the beginning of that period, non-users of the app. We assume that, within each time
period, each agent in WA

t sends to each of the agents in WN
t one invite with some

probability r. We assume that this probability is symmetric across all app users.
The receipt of an invite incentivizes non-users to join the app.

We will assume that an agent in WN
t also has a probability �p ≥ 0 to join the app

spontaneously, without receiving any invites. This is assumed to be exogenous and
symmetric across agents. In contrast with baseline epidemiological models, we will
assume that this probability of spontaneous app sign-up, corresponding to infection
from the virus via environmental channels other than human transmission such as
food/water/contaminated surfaces, is positive (and exogenous).35

Therefore, the additional probability of joining the app due to the receipt of an
invite will be bounded from above by 1− �p and we will assume it is increasing in
the amount of total invites vt that the agent receives. This will in turn be assumed
a positive function of the content stock of the app, which, in general, depends on
both the app’s number of users and their average content creation productivity
q . 0 (assumed constant over time). We also assume that content depreciates
based on a parameter 0 , d , 1.

Therefore, in each period t each agent i [ WN
t has a, symmetric across agents,

total probability of joining the app equal to:

pt = �p+ (1− �p)q(v(Vt))

with

Vt =
∑t

j=0

dt−jqWA
j

which is increasing in the number of users in the platform. In particular, v(Vt) will be
increasing in Vt and will be symmetric for all agents in WN

t i.e. all non-users will
have the same invite receipt level for any given content stock Vt .

36 Since each
agent in WN

t receives one invite from each agent in WA
t with probability r, we

34Although engagement in the platform is important and more sharing on the platform means more
engagement, we will focus on interaction between infectious and susceptible P users which can
lead to app usage diffusion (e.g. content sharing or friend invitations). User engagement will be cap-
tured through users’ contribution to the stock of the app Vt .

35A positive probability of “infection” through other means than contact with the “infected” population
of app users will allow us to capture in the model the fact that only some proportion of new app sign-
ups within a time period are due to content shares/invites via P.

36Here and everywhere agents that are in the addressable market are assumed to have the same features
as non-users.
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have that the expected average number of invites received is:

v(Vt) = r(Vt)W
A
t

hence

pt = �p+ (1− �p)q(v(Vt)) = �p+ (1− �p)q(r(Vt)W
A
t )

Therefore, a higher number of app users can have both a direct network effect in
the spread of the app’s user base, as higherWA

t means higher v(Vt), but also an indir-
ect network effect through the probability r(Vt) as higher WA

t means more content
Vt hence higher probability for each agent to share content.

We next look in detail at the probability r(Vt) with which each infectious agent
will share an invite with each of the susceptible agents. In principle, the probability
r(Vt) with which an infected individual inWA

t will make contact with each of the sus-
ceptible agents in WN

t can be increasing, decreasing or fixed in WA
t .

On one hand, as the infection spreads and the app gets more users, the content
stock of the platform Vt increases and so does the propensity of all users to share
content/invites with other users. As all agents face a time constraint though it is intui-
tive that the rate of this increase will be bounded. This captures the indirect positive
network effect. However, at the same time, the susceptible agents set shrinks and so
the proportion of content/invites reaching susceptible agents falls. Therefore, the
overall probability r(Vt) that an infectious agent will interact with each susceptible
agent may increase, fall or remain constant as time passes.

To simplify the analysis we will assume that indirect network effects are exactly
strong enough to keep the probability r(Vt) fixed.

r(Vt) = z, 0 , z , 1

We note that, even when the probability r(Vt) is constant, the direct network
effect would still cause the total number of interactions experienced by each suscep-
tible individual v(Vt) = r(Vt)WA

t to increase.
Therefore, v(Vt) = r(Vt)WA

t = zWA
t captures both the indirect and the direct

network effects at play.
We next assume that the app also faces an exogenous churn rate37 i.e. that a posi-

tive share c of users are removed from the infected/infectious population every
period. This could refer to users who do not really like the app so stop signing in
and become “ghost” users with zero content viewing, creating and sharing activity.

We can, therefore, capture not only users who delete their app account but also
those that are effectively removed due to inactivity. Users who delete their accounts
can easily register again, similarly to “ghost” users who can simply resume activity in
the future. We hence simplify this by treating these two groups in the same way and
assuming they are removed from the infected/infectious population but that they re-

37If we assume that there is zero churn in the app i.e. once a susceptible user becomes a user of the app
they never quit, this amounts to zero removal rate from the infected population and, in the absence of
the conduct, zero removal rate from the infectious population as well. Under this assumption, it will be
easy to check that the conduct can harm the app by reducing its growth only down to the minimum
growth rate that is solely due to the spontaneous probability of a new user joining. If this exogenous
probability is positive then the app remains an “epidemic” besides P’s conduct.
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enter the susceptible population so that they can re-join with probability pt+1 in the
next time period. We assume that users who have newly joined stay active for at least
one period before considering de-activating,38 and that no one can be removed from
the population due to death or with immunity to re-joining.

At any time period t, we then have a fully connected network with the agent popu-
lation divided into two compartments, an infected/infectious compartment

WA
t = WA

t−1 + pt−1W
N
t−1 − cWA

t−1 = (1− c)WA
t−1 + pt−1W

N
t−1

and WN
t susceptible agents

WN
t = WN

t−1 − pt−1W
N
t−1 + cWA

t−1 = (1− pt−1)W
N
t−1 + cWA

t−1

with

WA
t + WN

t = W

For p0 . 0, WA
0 . 0, as time passes and WA

t increases, Vt and pt further grow
but the set of susceptible agents WN

t shrinks.
Replacing the total probability of a new infection in the infected population

formula we get:

WA
t = (1− c)WA

t−1 + pt−1W
N
t−1

= (1− c)WA
t−1 + (�p+ (1− �p)q(r(Vt−1)W

A
t−1))W

N
t−1

Define t as the probability that a susceptible agent accepts an invite received and
assume that this remains fixed in time (and independent of how many invites have
been rejected). The probability q(r(Vt)WA

t ) that a susceptible individual who has not
joined the app spontaneously accepts an invite among the ones received and hence
becomes an app user in period t will be equal to the probability of not joining spon-
taneously times one minus the probability of rejecting all r(Vt)WA

t invites received in
period t:

q(r(Vt)W
A
t ) = (1− (1− t)r(Vt)WA

t )

Therefore, the total number of new infections within the time period will be
given by:

[�p+ (1− �p)(1− (1− t)r(Vt)WA
t−1 )]WN

t−1

and the total number of the infected will be:39

WA
t = (1− c)WA

t−1 + [�p+ (1− �p)(1− (1− t)r(Vt)WA
t−1 )]WN

t−1

38This is a simplifying but reasonable assumption. According to this, newly infected or spontaneously
joining users will be infected for the full next period but then may leave with probability c.

39Our assumption that new infection cases only become infectious to others from the next time period
onwards is consistent with the incubation period in epidemiology.
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Growth rate and reproduction number in the counterfactual

One of the most popular metrics40 used by the literature to describe the spreading
potential of a virus and whether it can invade a population and become an epidemic
is the Reproduction number R0, defined as the number of secondary app new users
produced by a single app user in an, otherwise, completely susceptible population of
non-app users.41 Note that this defines a dimensionless number and not a rate, giving
the number of susceptible individuals that will become infected at time zero by the
single infected agent.

In the recent epidemiological literature, the reproduction number R0 has often
been used as the threshold quantity that determines whether a disease can invade
a population.

The probability that each susceptible agent, who does not join spontaneously,
becomes infected due to an interaction is, by definition, equal to q(r(V0)WA

0 ). There-
fore, the number of secondary app users produced by a single app user in an, other-
wise, completely susceptible population is:

R0 = (1− �p)WN
0 q(r(V0)W

A
0 )

where WA
0 = 1.

Given the fully connected network, the infected agent sends r(V0)WN
0 invites.

Since at the beginning only one agent is infectious, all susceptible agents receive
r(V0) invites, therefore, the reproduction number will be:

R0 = (1− �p)WN
0 q(r(Vt)) = WN

0 (1− �p)(1− (1− t)r(V0)WA
0 )

= WN
0 (1− �p)(1− (1− t)r(V0))

with [(1− t)r(V0)] giving the probability that a susceptible agent rejects all invites
they receive and hence remain uninfected at the end of period 0.

In a standard model, the infectious individual would either die or recover i.e.
cease to be infectious but also become immune to new infection and in any case
be removed from the population by the next time period. Therefore, for the infection
to be an epidemic (with no environmental spread) we would need that R0 . 1. In our
context, however, this condition is no longer necessary: since, in the absence of
blocking/foreclosure conduct from P, each infected individual remains infected
forever i.e. once they become an app user they can send content/invites to non-
app users forever afterwards, we only need that the number of total new infections
is larger than the churn:

DWA
t = [�p+ (1− �p)(1− (1− t)r(Vt)WA

t )]WN
t−1 − cWA

t−1 . 0

40Others include the Contact number and the Replacement number which are defined at any time t.
41At time zero, we assume that there is a single app user so that the susceptible population is almost
equal to the entire population WN

0 = W − 1.
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For the first time period this gives:

DWA
1 = WA

1 −WA
0 . 0 � WN

0 [�p+ (1− �p)(1− (1− t)r(V0))] . cWA
0

� WN
0 �p+ R0 . cWA

0

Therefore, for low enough churn i.e. high enough quality of services, the app
“virus” will always invade the susceptible population of agents that are not app
users and become an epidemic.

Allowing P to engage in conduct to suppress A’s “spread”

We will continue to assume that the sets WNN
t and WAN

t are empty (or negligible in
size). Then WA

t ; WAP
t and WN

t ; WNP
t . In other words, we will limit attention to

the effects of conduct within the P network.
We assume that a share s of the app’s users are no longer able to interact with

non-users or otherwise prevented from contributing to new user acquisition
through P’s conduct.42 This captures the fact that, while all app users may be
affected by P’s conduct, frictions imposed are not perfect or there may be
some workarounds to overcome obstacles imposed by the conduct in the inter-
action between users and non-users of the app such that e.g. invites could
still be shared to some degree. The set of “Blocked users” who are prevented
from contributing to user acquisition remain part of the infected population
but will not be able to recruit new app users through their activity.
Blocked users can find/use workarounds in the next period but overall a
constant share of the infected population is blocked and not infectious in each
time period.

In addition, we assume that a share of the app’s users do not quit “spon-
taneously” but their quitting is induced by P’s conduct. This allows us to model
the scenario when a share k of the blocked users WAB

t−1 quit the app (in the
broad sense of inactivity described previously) due to the fact that they could
no longer interact with non-app users in P. We will assume that users need to
be blocked for at least one period before considering leaving due to
blocking.43 This could reflect the fact that e.g., P is for these users their primary
social network so they do not care for any content sharing/creation activity if it
cannot be integrated in their P activity, and/or that these users respond to blocking
by replacing the app with another app, such as one owned/favoured by P, which is
not subject to the conduct.

The remaining agents still remain part of the app i.e. the fact they cannot share
content or the reduced interoperability and interaction with users of P do not

42The corollary in an epidemiological model is that some app users are still “infected” but are no longer
“infectious”.

43This is a simplifying but reasonable assumption. According to this, newly blocked users will be infected
for the full period but then may leave with probability k as a result of being blocked hence dissatisfied
with the app.
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induce them to quit the app. They will, therefore, be part of the infected population
but will not be infectious since they will not be able to recruit new app users through
their activity.

At any time period t, we will then have a fully connected network of agents in
three groups: WAB

t blocked app users who are hence not infectious: WAI
t infectious

agents and WN
t susceptible agents:

WAI
t = (1− s)(1− c)(1− k)WAB

t−1 + (1− s)(1− c)WAI
t−1

+ (1− s)[�p+ (1− �p)(1− (1− t)r(Vt−1)WAI
t−1 )]WN

t−1

WAB
t = s(1− c)(1− k)WAB

t−1 + s(1− c)WAI
t−1

+ s[�p+ (1− �p)(1− (1− t)r(Vt−1)WAI
t−1 )]WN

t−1

WN
t = [1− �p− (1− �p)(1− (1− t)r(Vt−1)WAI

t−1 )]WN
t−1 + cWAI

t−1 + (1− k)cWAB
t−1

+ kWAB
t−1

with WAI
t + WAB

t + WN
t = W.

Now the infected population equals the blocked plus the infectious users:

WA
t =WAI

t +WAB
t

= (1− s)(1− c)(1− k)WAB
t−1 + (1− s)(1− c)WAI

t−1

+ [�p+ (1− �p)(1− (1− t)r(Vt−1)WDI
t−1 )]WN

t−1

+ s(1− c)(1− k)WAB
t−1 + s(1− c)WAI

t−1 = (1− c)(1− k)WAB
t−1 + (1− c)WAI

t−1

+ [�p+ (1− �p)(1− (1− t)r(Vt−1)WAI
t−1 )]WN

t−1

= WAB
t−1 +WAI

t−1 − (k+ c− ck)WAB
t−1 − cWAI

t−1

+ [�p+ (1− �p)(1− (1− t)r(Vt−1)WAI
t−1 )]WN

t−1

Therefore,

DWA
t = WA

t −WA
t−1 = WAI

t +WAB
t −WAB

t−1 −WAI
t−1

= [�p+ (1− �p)(1− (1− t)r(Vt−1)WAI
t−1 )]WN

t−1 − (k+ c− ck)WAB
t−1 − cWAI

t−1

and we see that now the growth rate of the app’s population is positive only for:

[�p+ (1− �p)(1− (1− t)r(Vt−1)WAI
t−1 )]WN

t−1 . (1− (1− k)(1− c))WAB
t−1 + cWAI

t−1

pt−1W
N
t−1 . (k+ c− ck)WAB

t−1 + cWAI
t−1

i.e. if the newly infected exceed those removed due to spontaneous churn or conduct-
induced churn.

The app can hence shrink and blocking, which both reduces the probability pt and
causes the additional churn rate k can lead to the elimination of the app in the P
network.
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Dynamic evolution of the app’s user base after the conduct is
introduced

Using our assumption that r(Vt) = z at all t the system becomes:

WAI
t = (1− s)(1− c)(1− k)WAB

t−1 + (1− s)(1− c)WAI
t−1

+ (1− s)[�p+ (1− �p)(1− (1− t)zW
AI
t−1 )]WN

t−1

WAB
t =s(1− c)(1− k)WAB

t−1 + s(1− c)WAI
t−1

+ s[�p+ (1− �p)(1− (1− t)zW
AI
t−1 )]WN

t−1

WN
t = [1− �p− (1− �p)(1− (1− t)zW

AI
t−1 )]WN

t−1 + cWAI
t−1 + (1− k)cWAB

t−1 + kWAB
t−1

WAI
t + WAB

t + WN
t = W

or in summary form, using the last equation to drop the third one:

WAI
t = (1− s)(1− c)(1− k)WAB

t−1 + (1− s)(1− c)WAI
t−1

+ (1− s)[�p+ (1− �p)(1− (1− t)zW
AI
t−1 )](W −WAI

t−1 −WAB
t−1)

WAB
t = s(1− c)(1− k)WAB

t−1 + s(1− c)WAI
t−1

+ s[�p+ (1− �p)(1− (1− t)zW
AI
t−1 )](W −WAI

t−1 −WAB
t−1)

In growth rate form we have:

DWAI
t = (1− s)[�p+ (1− �p)(1− (1− t)zW

AI
t−1 )]WN

t−1 + (1− s)(1− c)(1− k)WAB
t−1

− (1− (1− s)(1− c))WAI
t−1

DWAB
t =WAB

t −WAB
t−1 = s(1− c)WAI

t−1 − (1− s(1− c)(1− k))WAB
t−1

+ s[�p+ (1− �p)(1− (1− t)zW
AI
t−1 )]WN

t−1

DWAI
t + DWAB

t + DWN
t = 0

This is a two-dimensional non-linear system of difference equations with no
analytical solution, which can however be simulated using calibrated or estimated
parameter values and initial conditions.44

44See e.g., Chapter 2 of MRS Kulenovic and O Merino, ‘Discrete Dynamical Systems and Difference
Equations with Mathematica’.
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Dynamic evolution of the app’s user base with complete effective
blocking

We notice that even if the entire population of infected agents were effectively
blocked starting at period t

ˇ
such that s = 1, we would have:

WAI
t̃ = 0

WAB
t̃ = (1− c)(1− k)WAB

t̃−1 + (1− c)WAI
t̃−1 + �p+ (1− �p) 1− (1− t)zW

AI
t̃−1

( )[ ]
WN

t̃−1

WN
t̃ = 1− �p− (1− �p) 1− (1− t)zW

AI
t̃−1

( )[ ]
WN

t̃−1 + cWAI
t̃−1 + (1− k)cWAB

t̃−1

+ kWAB
t̃−1

hence the infected population would be equal to the blocked population:

WA
t̃ =WAB

t̃ = (1− c)(1− k)WAB
t̃−1 + (1− c)WAI

t̃−1

+ �p+ (1− �p) 1− (1− t)zW
AI
t̃−1

( )[ ]
WN

t̃−1

In the following period, we would then have:

WAI
t̃+1 = 0

WAB
t̃+1 = (1− c)(1− k)WAB

t̃ + �pWN
t̃

WN
t̃+1 = (1− �p)WN

t̃ + (c+ k− ck)WAB
t̃

with

WA
t̃+1 = WAB

t̃+1 = (1− c)(1− k)WAB
t̃ + �pWN

t̃

and growth rate

DWA
t̃+1 = DWAB

t̃+1 = WAB
t̃+1 −WAB

t̃ = �pWN
t̃ − [1− (1− c)(1− k)]WAB

t̃

For high enough �p and low enough spontaneous churn and churn due to
blocking, this growth rate can still be positive. Therefore, this exogenous prob-
ability of joining the app spontaneously limits the maximum harm of the
conduct.

Dynamic evolution of the app’s user base in the counterfactual and
pre-conduct period

The above system captures the post-conduct scenario. During the time periods
pre-conduct, as well as in the counterfactual with no blocking, the infectious
population coincides with the infected as the blocked population is zero.
This corresponds to s = 0 hence k = 0 i.e. churn is only spontaneous. Therefore,
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we have:

WA
t = WAI

t = (1− c)WA
t−1 + [�p+ (1− �p)(1− (1− t)zW

A
t−1 )]WN

t−1

WAB
t = 0

WN
t = W −WA

t

or in summary form:

WA
t = (1− c)WA

t−1 + [�p+ (1− �p)(1− (1− t)zW
A
t−1 )](W −WA

t−1)

or in growth rate form:

DWA
t = DWAI

t = [�p+ (1− �p)(1− (1− t)zW
A
t−1 )]WN

t−1 − cWA
t−1

DWN
t = −DWA

t

This system can again be simulated using calibrated or estimated parameter
values and initial conditions.
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