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Adverse Selection and Auction Design  
for Internet Display Advertising†

By Nick Arnosti, Marissa Beck, and Paul Milgrom*

We model an online display advertising environment in which “per-
formance” advertisers can measure the value of individual impres-
sions, whereas “brand” advertisers cannot. If advertiser values for 
ad opportunities are positively correlated, second-price auctions 
for impressions can be inefficient and expose brand advertisers to 
adverse selection. Bayesian-optimal auctions have other drawbacks: 
they are complex, introduce incentives for false-name bidding, and 
do not resolve adverse selection. We introduce “modified second 
bid” auctions as the unique auctions that overcome these disadvan-
tages. When advertiser match values are drawn independently from 
heavy-tailed distributions, a modified second bid auction captures at 
least ​94.8 percent​ of the first-best expected value. In that setting and 
similar ones, the benefits of switching from an ordinary second-price 
auction to the modified second bid auction may be large, and the cost 
of defending against shill bidding and adverse selection may be low. 
(JEL D44, D82, L86, M37)

Since the pioneering papers by Edelman, Ostrovsky, and Schwarz (2007) and 
Varian (2007), there has been a growing body of research focusing on auctions for 
sponsored search advertising on the Internet. These automated auctions, which are 
initiated when a consumer enters a search query, allow advertisers to bid in real time 
for the opportunity to post ads near unpaid search results.

Markets for Internet display advertising, which determine ad placements on all 
other kinds of websites, traditionally operated quite differently. Following practices 
established for offline media, most impressions were sold through contracts that 
guaranteed an advertiser a large volume of impressions over a prespecified time 
period, for a negotiated price. More recently, the high revenues associated with 
sponsored search auctions prompted the display advertising industry to introduce 
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real-time bidding, in which advertisers bid in auctions for individual impressions. 
Proponents of real-time bidding argue that it alone has the potential to allow each 
online impression to be routed to the advertiser who values it most highly. Achieving 
this theoretical ideal, however, requires that each advertiser knows its value for each 
individual impression.

What advertisers know about their values depends in part on the types of feed-
back they collect. Some advertisements are designed to elicit an immediate response 
from the consumer—most commonly, a click on a link to a website where a sale 
may occur. By aggregating click and sales data from many impressions, an adver-
tiser might learn how various characteristics of past opportunities have correlated 
with ad performance. With this knowledge, such a performance advertiser could 
predict the value of future advertising opportunities with reasonable accuracy.

Other advertisements, meanwhile, do not seek an immediate response from the 
user. Instead, they aim to notify the user of a sales event, movie opening, or other 
upcoming opportunity, or to raise the user’s awareness of an individual brand or 
product. Recent work by Lewis and Rao (2015) highlights the difficulty of estimat-
ing the return from such an ad campaign; distinguishing the values of individual 
ads is even more difficult. The limited feedback available to these brand advertisers 
makes it hard for them to reliably estimate values for individual ad opportunities.

For brand advertisers, real-time bidding presents an additional challenge by 
introducing the possibility of adverse selection. Advertisers’ values for different ad 
opportunities tend to be positively correlated: all advertisers want to avoid showing 
their ads to automated web crawlers and most prefer to show more ads to consum-
ers with greater disposable incomes and responsiveness to online advertising. As 
a result, performance advertisers tend to bid higher on opportunities that are more 
valuable to brand advertisers and brand advertisers may have difficulty measuring 
the resulting losses and adjusting their bids accordingly.

This work compares the performance of different auction designs when adver-
tiser valuations are positively correlated and advertisers are differentiated in their 
abilities to estimate the values of individual impressions. Most of the paper assumes 
that the mechanism designer chooses an auction with the goal of maximizing the 
efficiency of the allocation, although in Section VI we briefly address the alternate 
objective of maximizing revenue.

We introduce our model in Section II. Each bidder’s value for an ad opportunity 
is the product of two factors: the overall quality of the opportunity, which affects 
the value for all advertisers, and an idiosyncratic match quality, which is unique to 
the particular bidder. If values are primarily determined by overall quality with little 
variation in idiosyncratic match qualities, then the benefits from using real-time bid-
ding to assign individual impressions are minimal. If, on the other hand, differences 
in bidders’ values arise entirely from differences in match quality with little varia-
tion in overall quality, then adverse selection is absent and real-time bidding using 
a second-price auction achieves an efficient allocation. Ideally, one would want a 
mechanism that performs well in both of these extreme cases as well as in inter-
mediate ones in which common and idiosyncratic components are both significant 
determinants of advertiser valuations. Such a robust mechanism might be especially 
attractive if advertisers disagree about their ability to measure value and about the 
importance of adverse selection.



2854 THE AMERICAN ECONOMIC REVIEW october 2016

We consider several ad allocation mechanisms:

	 (i)	 Second-price auctions with reserves, resembling current practice.

	 (ii)	 An optimal auction, which maximizes the expected value to the advertisers, 
given the auctioneer’s beliefs.

	 (iii)	 A new parameterized class of modified second bid (MSB) auctions, which 
allocate each impression to the highest performance bidder provided that the 
ratio of its bid to the second-highest performance bid exceeds some factor ​
α  ≥  1​.

	 (iv)	 The omniscient or first-best benchmark, which is the auction that maximizes 
allocative efficiency assuming that the auctioneer, in addition to observing 
the performance bids, also observes the overall quality of each impression.

We evaluate the performance of these mechanisms under two conditions. The 
first allows any distributions for the overall quality variable and the match quality 
variables. The second restricts the match values to follow power law distributions 
(also known as Pareto distributions). This restriction aims to capture the idea that 
much of an advertiser’s value from real-time bidding comes from relatively few 
matches of very high quality, such as individuals who recently viewed a product in 
its online store.1

Section III demonstrates that even in the limited class of power law environ-
ments, the second-price auction with an optimal reserve can capture as little as 
one-half of the value delivered by the benchmark omniscient mechanism. The 
Bayesian-optimal mechanism (OPT) does better by using information in perfor-
mance advertiser bids to maximize efficiency. However, we show in Section IV that 
OPT encourages false-name bidding, in which the high bidder increases its chance 
of winning and reduces its expected price by placing a low bid using an additional 
account. In this auction, placing just one bid may be a dominated strategy. Even 
if false-name bidding could somehow be prevented, another drawback of OPT is 
adverse selection against brand advertisers: the impressions awarded to those adver-
tisers may be of disproportionately low value. If the parties have different beliefs 
about the unobservable distributions of overall and match qualities, the presence of 
adverse selection could prevent them from agreeing on a contract price.

These drawbacks of the optimal auction lead us to seek out a class of determin-
istic, anonymous mechanisms that eliminate adverse selection and the incentives 
for false-name bidding. We show in Section V that this class is exactly the fam-
ily of modified second bid (MSB) auctions. This axiomatic approach to identify-
ing the MSB mechanism is unusual: auction theory analyses more often focus on 

1 The power law distribution is given by ​F(x)  =  1 − ​x​​ −a​​ for ​x  ∈  [ 1, ∞)​. The parameter ​a​ determines the 
weight of the power law tail. For ​a  >  1​ , the mean of the distribution is finite (in particular, it is ​​  a _ a − 1 ​​ ). A random 
variable ​X​ has this power law distribution if and only if ​ln (X)​ has an exponential distribution with mean ​1 / a​ , which 
holds if and only if ​E [ X | X  >  y ]   ≡  yE [ X ]​ for all ​y  >  1​. The Wikipedia article on the Pareto Principle describes 
how the 80–20 rule of marketing is modeled by the power law distribution of sales across customers. 
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optimal mechanisms for specific environments. Nevertheless, our analysis follows 
a respected tradition in economic theory and mechanism design, in which authors 
have often imposed properties like stability, envy-freeness, and strategy-proofness 
that do not depend on detailed distributional assumptions. One goal of this axiomatic 
approach is to respect the Wilson doctrine by creating a mechanism whose perfor-
mance is not too sensitive to detailed assumptions about the economic environment.

Section VI establishes that in addition to eliminating false-name bidding and 
adverse selection, MSB auctions also perform well relative to both optimal and 
second-price auctions. Without restrictions on match value distributions, all three 
have the same worst-case performance, which is 50 percent of the performance of the 
omniscient mechanism. More surprisingly, if match values follow a power law, then 
the worst-case performance of second-price auctions is still only one-half of the value 
from an omniscient mechanism, whereas MSB auctions guarantee 94.8 percent! This 
is not an artifact of using efficiency as our objective. In the same model, MSB also 
guarantees 94.8 percent of the revenue generated by any strategy-proof mechanism.

Why do MSB auctions perform so well when match quality has a power law 
distribution? For an auction to lead to efficient allocations, it must distinguish cases 
in which some performance advertiser has a high match quality (and so should win 
the impression) from ones in which no performance advertiser has high match qual-
ity (so that the brand advertiser should win). Intuitively, when match quality has a 
power law distribution, a large fraction of the total value to performance advertisers 
is generated when one performance advertiser has a match quality that is at least ​
α​ times higher than the next highest match quality, while this same inequality is 
unlikely to be satisfied if the impression is a poor match for all performance adver-
tisers. So, with a careful choice of ​α​ , MSB can capture a large fraction of the total 
value from both performance and brand advertisers.

I.  Related Work

There is a large and growing literature on auctions for Internet advertising. 
Various papers focus on the role of risk aversion, budget constraints, dynamic con-
tract formation and fulfillment in the presence of uncertain supply, revealing and/or 
selling cookies, the role of intermediaries, and many other concerns. In this work, 
we ignore dynamic considerations and budgets to focus on the information structure 
and the potential difficulty of even the seemingly simple goal of determining a myo-
pically efficient allocation.

The line of work most closely related to our own is that which asks the question 
of how to jointly allocate impressions across advance contracts and spot market 
sales. The primary differences between these papers and our own are the assump-
tions about the correlation between advertiser valuations. Prior work has focused 
on extreme cases by assuming either that spot market bids do not provide infor-
mation about the brand advertiser’s value (Chen 2010; Balseiro et al. 2014) or that 
they perfectly reveal this value (Ghosh et al. 2009). In either case, determining a 
(myopically) efficient allocation is trivial, so these papers focus on other topics. 
By contrast, we formulate a model with a mix of common and private values, so 
that spot market bids provide information about the brand advertiser’s value for the 
impression, but do not perfectly determine it.
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Milgrom and Weber (1982) provide one of the earliest analyses of auction envi-
ronments with a mix of common and private values. Due to the symmetry in the 
assumed environment, standard auctions yield an efficient allocation. Some later 
work has investigated information asymmetry in settings where auctions have a 
common value component. Most recently, Abraham et al. (2013) study information 
asymmetry and adverse selection in the context of Internet advertising. They focus 
on the auctioneer’s revenue and most of their work considers an environment with 
pure common values, so that achieving an efficient allocation is trivial.

II.  Model

We consider the allocation of a single impression. There are ​N + 1​ advertisers 
competing for this impression, with ​N​ random and ​P(N  ≥  2)  =  1​. Advertiser ​i​ 
has value ​​X​i​​​ for the impression. The value ​​X​i​​​ is the product of two terms: a common 
value, ​C,​ and a match value, ​​M​i​​​. We interpret ​C​ as capturing attributes of the user 
that are valuable to all advertisers, such as the user’s income and responsiveness 
to online advertising. Meanwhile, the value ​​M​i​​​ captures idiosyncratic components 
that contribute to the quality of the match for advertiser ​i​. We assume that, given ​N​ , 
the ​​M​i​​​ are drawn independently from (not necessarily identical) distributions ​​F​i​​​ , that ​
C​ is drawn from a distribution ​G​ , and that ​M  =  (​M​0​​ , … , ​M​N​​)​ is independent of ​C​.  
Furthermore, we assume that both match and common values have finite expecta-
tions. We use ​​X​(k)​​​ and ​​M​(k)​​​ to denote the ​k  th​ highest value and match value factor, 
respectively.

We assume that advertisers ​i  ∈  { 1, … , N }​ (the performance advertisers) observe 
their values ​​X​i​​​ , but not the components ​C​ and ​​M​i​​​. Meanwhile, advertiser 0 (whom 
we refer to as a brand advertiser) cannot observe ​​X​0​​​.2 The assumption that there is a 
single uninformed advertiser and multiple informed advertisers is made for exposi-
tional simplicity and could easily be relaxed as part of a richer model.

Making use of the revelation principle and the assumed risk neutrality of bid-
ders, we consider a mechanism to be a mapping from the privately held infor-
mation ​X  =  (​X​1​​ , … , ​X​N​​)​ to allocation probabilities ​z​ and payments ​p​. For 
​i  ∈  { 0, … , N }​ , we let ​​z​i​​ (X)​ be the probability that advertiser ​i​ wins and ​​p​i​​ (X)​ be 
advertiser ​i​’s expected payments, given ​X​. For fixed ​​F​i​​​ and ​G​ , given an allocation 
rule ​z​ , we define the total surplus from impressions awarded to the brand adver-
tiser by ​​V​B​​ (z)  =  E[ ​X​0​​ ​z​0​​ (X) ]​. Similarly, we define the surplus from impressions 
awarded to performance advertisers by ​​V​P​​ (z)  =  E​[​∑ i=1​ N  ​​ ​X​i​​ ​z​i​​ (X)]​​. We consider 
objectives that are weighted sums of these two terms. In particular, for fixed ​γ  >  0​ , 
we define

	​ V(z)  =  γ ​V​B​​ (z)  + ​V​P​​ (z).​

When ​γ  =  1​ , this corresponds to the total efficiency of the allocation. We show in 
Section VI that when match qualities are drawn from a power law distribution, if ​

2 If the brand advertiser can measure the value of its overall campaign and nothing more, then it observes ​E[ ​X​0​​ ]​ , 
but not the distributions ​G​ and ​​F​0​​​ separately. This motivates the axiom of adverse-selection freeness discussed in 
Section V. 
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γ​ is chosen to reflect the relative bargaining power of the publisher and the brand 
advertiser, then this objective is proportional to the publisher’s expected revenue, 
allowing our results to apply to that objective as well.

Throughout, we use as a benchmark the first-best or omniscient mechanism, 
which operates as the publisher would if the common value ​C​ were observed. In 
this case, the publisher could deduce match values ​M​ from performance bids ​X​ and 
condition the allocation directly on match values. The omniscient allocation rule is 
simple: award the impression to the performance advertiser with the highest value 
whenever ​​M​(1)​​  >  γE[ ​M​0​​ ]​ and to the brand advertiser otherwise. We denote this 
allocation rule as ​OMN​. This allocation rule is in general not implementable, but 
it provides an upper bound on the value attainable by any mechanism and a way to 
measure the losses due to the fact that ​C​ is unobservable.

III.  Second-Price Auction

In this section, we consider one simple mechanism for the allocation problem: a 
second-price auction. Although this mechanism is efficient if all advertisers know 
their own values, Proposition 1 shows that it may lose up to one-half of the value 
that could be obtained by OMN (i.e., if ​C​ were observed).

Because the brand advertiser does not observe its value, it has no dominant strat-
egy, so our analysis must rely on some other criterion to predict its bid. Naïvely, 
it might bid its expected value ​E[ ​X​0​​ ]​ in each auction. This would be optimal if its 
value were independent of the values of other advertisers (i.e., if ​C​ were constant), 
but could be a very poor strategy if the correlation between the brand value and 
the values of other advertisers is high. Instead, we assume that the brand advertiser 
plays a best response to the dominant strategies of the other bidders. It chooses ​b​ to 
maximize its expected profit, as given by

	​ Π(b)   =  E [ (​X​0​​ − ​X​(1)​​) ​1​​X​(1)​​≤b​​ ]​.

Note that in order to compute the optimal bid, the brand advertiser must know the 
distribution of the top performance bid and the correlation between ​​X​(1)​​​ and ​​X​0​​​  
(as determined by the distribution of ​C​). In practice, these could be challenging  
to learn.

If the publisher has more information about competing bidders, a reasonable alter-
native is for the publisher to submit a proxy bid on behalf of the brand advertiser. 
This resembles a solution to the allocation problem commonly used in practice: the 
publisher signs a contract with the brand advertiser and submits each opportunity, 
along with a corresponding reserve price, to a real-time exchange. If the reserve is 
met, the impression is awarded to the top bidder. Otherwise, it is allocated to the 
brand advertiser. We let ​S​P​b​​​ denote the allocation rule of the second-price auction 
when the brand advertiser submits a bid of ​b​ (or the publisher does so on the brand 
advertiser’s behalf). This mechanism is simple and intuitive, and allows performance 
advertisers to win impressions for which they have very high values. However, for 
any reserve price, the brand advertiser wins more often when ​C​ is low than when ​C​ 
is high, which causes the resulting allocation to be inefficient.
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How inefficient might the second-price auction (with optimally chosen reserve)3 
be? Two extremes are to set the reserve at zero (so that the brand advertiser never 
wins) or to set it arbitrarily high (so that the brand advertiser always wins). Thus, the 
second-price auction can always deliver a value of ​max (γE[ ​X​0​​ ], E[ ​X​(1)​​ ])​. Clearly, 
no mechanism can deliver more than ​γE[ ​X​0​​ ] + E[ ​X​(1)​​ ]​ , so for any distribution of 
match and common values, the second-price auction (with appropriate reserve) 
delivers at least one-half of the available value. The next result states that this bound 
is tight, even if performance match values are restricted to be i.i.d.

Proposition 1:

	 (i)	 For any ​γ > 0​ , ​N ≥ 2​ , ​​F​i​​​ , ​G​ , and ​E[ ​M​0​​ ]​ , there exists ​b ∈ { 0, ∞}​ such that

	​ V(S​P​b​​) ≥ ​ 1 _ 
2
 ​ V(OMN) .​

	 (ii)	 For any ​γ, ε > 0​ , there exists ​F, G, N​, and ​E[ ​M​0​​ ]​ such that if performance 
match values are drawn i.i.d. from ​F​ ,

	​ ​sup​ 
b≥0

​ ​ ​  V(S​P​b​​) < ​(​ 1 _ 
2
 ​ + ϵ)​ V(OMN).​

To show that the bound of one-half is tight, we use a sequence of examples in 
which both match and performance values follow power law distributions: for ​
x  ≥  1​, ​P(​M​i​​ > x) = ​x​​ −a​​ and ​P(C > x) = ​x​​ −c​​ , where ​a, c > 1​ are parameters 
determining the weights of the power law tails.

For the performance of the second-price auction to approach the lower bound 
of ​1/2​, three things must be true. First, the omniscient mechanism needs to deliver  
nearly ​γE[ ​X​0​​ ] + E[ ​X​(1)​​ ]​. Second, the highest bid in the auction must con-
vey virtually no information about the optimal assignment, so that ​​sup​ b​ ​ ​ V(S​P​b​​)  
≈ max (γE[ ​X​0​​ ], E[ ​X​(1)​​ ])​. Third, it must be the case that ​γE[ ​X​0​​ ] = E[ ​X​(1)​​ ]​. The first 
condition holds as ​a ↓ 1​, for in that case nearly all of the performance value can be 
captured from a vanishingly small fraction of the impressions, while delivering the 
remainder to the brand advertiser. For fixed ​a​ , the second condition holds as ​c ↓ 1​ 
because then nearly all of the variation in the highest bid comes from variations in ​
C​ (which are irrelevant when determining the optimal assignment). Given the dis-
tribution of performance match values, the third condition is satisfied by a suitable 
choice of ​E[ ​M​0​​ ]​. All three conditions can thus hold simultaneously, proving that the 
bound is tight.

Although the circumstances above are quite specific and the worst-case bound 
of 50 percent is never exactly met, this family of examples demonstrates that even 
an optimally selected second-price auction may be unsatisfying if the publisher 

3 Note that in our model, the brand advertiser and publisher have the same information, and thus when ​γ  =  1​ 
(so that the publisher wishes to maximize total surplus) the second-price auction and “contract with proxy bid-
ding” are mathematically equivalent. In particular, if the publisher uses a reserve of ​b​, the resulting total sur-
plus is ​E[ ​X​0​​ ​1​​X​(1)​​≤b​​ ] + E[ ​X​(1)​​ ​1​​X​(1)​​>b​​ ]  =  Π(b) + E[ ​X​(1)​​ ]​. In other words, the brand advertiser’s optimal bid in a 
second-price auction is precisely the bid that maximizes allocative efficiency. 
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faces substantial uncertainty about both match and common value factors. 
Motivated by this fact, we next consider the properties of the Bayesian-optimal 
mechanism.

IV.  Bayesian-Optimal Auction

One approach to mitigating the potential inefficiency of the allocation from a 
second-price auction would be to solve for the Bayesian-optimal auction in our set-
ting. However, we argue in this section that even when this rule is monotonic and, 
therefore, implementable by a strategy-proof mechanism, it is an impractical solu-
tion to the allocation problem. Given bids ​X  =  x​ , the Bayesian-optimal auction 
(​OPT​  ) would award the impression to the performance advertiser with the highest 
value whenever ​E[ ​M​(1)​​ | X  =  x ]   >  γE[ ​M​0​​ ]​ and to the brand advertiser otherwise. 
This allocation rule depends in a detailed way on the distributions ​​F​i​​​ and ​G​ , and will 
in general be much more complicated than a second-price auction with a reserve. 
Furthermore, it suffers from two other significant drawbacks:

	 (i)	 Performance advertisers may have a clear incentive to submit shill bids.

	 (ii)	 The quality of impressions awarded to the brand advertiser may be dispropor-
tionately low.

The first concern arises because in many web-based environments, bidders reveal 
only virtual identities. A single bidder could create several accounts and submit 
multiple bids for the same impression. If the publisher uses ​OPT​ to select the win-
ner, such behavior can be profitable for the bidder. The reason is that the optimal 
allocation generally depends on the low bids as well as the high ones: the impression 
should be awarded to the top bidder only if its bid exceeds the expected value of 
the impression to the brand advertiser, conditional on the complete bid profile. By 
making one or more low bids, the top bidder can reduce the conditional expectation 
of ​C​ , thereby winning impressions that would otherwise go to the brand advertiser. 
This manipulation results in a loss of efficiency.

The second concern is that the quality of impressions won by the brand advertiser 
under ​OPT​ may differ systematically from a random sample. The value delivered 
to the brand advertiser under such a contract depends on the correlation between 
brand and performance values, which is determined by the distributions of ​M​ and ​C​.  
Since these distributions are not directly observed, the publisher and brand adver-
tiser might disagree about them and so be unable to negotiate a suitable contract  
price.

We illustrate both of these drawbacks by considering the case when match values 
follow a power law distribution.

Proposition 2: Suppose that match values are i.i.d. draws from a power law 
distribution. Then,

(i) �​ (N, ​X​(N)​​)​ is a sufficient statistic for ​​X​0​​​ , and ​E[ ​X​0​​ | N, ​X​(N)​​ ]​ is increasing 
in ​​X​(N)​​​.
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(ii) � If ​C​ follows a power law distribution, then under ​OPT​ , ​E[ ​z​0​​ (X)  | C, N ]​ is 
decreasing in ​C​.

The first point of Proposition 2 is useful for illustrating the impact of false-name 
bidding. It implies that ​OPT​ sells the impression to the highest-bidding performance 
advertiser if ​​X​(1)​​  >  γE[ ​X​0​​ | N, ​X​(N)​​ ]​ , at a price equal to ​max (γE[ ​X​0​​ | N, ​X​(N)​​ ], ​X​(2)​​)​. 
If, for example, ​C​ is distributed according to a positive density on ​[ 0,  ∞)​ , then an 
advertiser can ensure that ​γE[ ​X​(0)​​ | N, ​X​(N)​​ ] < ϵ​ by submitting an arbitrarily small 
false-name bid in addition to its truthful bid. This bid carries essentially no risk, 
removes the brand advertiser from the competition, and effectively converts the 
mechanism into a second-price auction among the performance advertisers.4

The second point establishes the existence of adverse selection: the higher the 
impression’s quality, the less likely it is to be awarded to the brand advertiser. 
The intuition for this point can be seen by regarding the conditional expectation ​
E[ ​X​0​​ | N, ​X​(N)​​ ]​ as a function of three variables: ​(N, C, ​M​(N)​​)​ , using ​​X​(N)​​  =  C ​M​(N).​​​ 
Intuitively, the expectation blends an unbiased estimate implied by the data with 
the prior expected value, so it responds less than proportionately to changes in ​
C​ , holding ​N​ and ​M​ constant. As a result, for any realizations of ​N​ and ​​M​(N)​​​ , the 
ratio ​​X​(1)​​/E[ ​X​0​​ | N, ​X​(N)​​ ]​ is increasing in ​C​. This results in adverse selection against 
the brand advertiser, who wins precisely when this ratio is less than ​γ​. We show 
in Section VI that these drawbacks of OPT may not be compensated by especially 
strong performance: for some settings, OPT delivers only one-half of the value that 
could be achieved if ​C​ were directly observed. Motivated by the limitations of the 
optimal mechanism, in the following section we seek a mechanism that discourages 
shill bidding and eliminates adverse selection.

V.  An Axiomatic Approach

The previous section demonstrated that the optimal mechanism can in general 
be manipulated by shill bids and may award brand advertisers impressions of dis-
proportionately low value. In this section, we study mechanisms that avoid these 
concerns.

We consider an extended game in which performance advertisers have the option 
to create and bid from multiple accounts. In such a setting, it may be infeasible 
to discriminate against individual bidders, so we seek a mechanism which treats 
bidders symmetrically. Furthermore, we require a mechanism for which it is a 
dominant strategy for each advertiser to play as a single bidder and to report its 
value truthfully. This restriction is similar to that imposed by Yokoo, Sakurai, and 
Matsubara (2004). Compared to their work, we introduce the additional requirement 
that bidders cannot reduce other bidders’ surplus by submitting additional low bids. 
This is intended to capture the possibility that advertisers with low values might be 
tempted to raise the prices paid by their competitors, particularly if they can do so 
by submitting bids that are certain not to win.

4 This conclusion does not rely on the power law distribution. So long as match values are distributed on ​[ 1,   ∞)​ 
and ​C​ is distributed on ​(0,   ∞)​ , ​E [ C | ​X​(1)​​ , … , ​X​(N)​​ ]  < ​ X​(N)​​​ , so a single low bid can reduce the estimate of ​​X​0​​​ 
sufficiently to exclude the brand advertiser from the allocation. 
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Definition 1: Given a mechanism ​(z, p)​ , let ​​z​−0​​​ and ​​p​−0​​​ denote the allocations 
and payments of performance advertisers. The mechanism is anonymous (among 
performance advertisers) if, for any ​n  ≥  2​ , any permutation ​σ​ on ​{1, … , n}​ , and 
any ​x  ∈ ​ ℝ​ +​ n ​​ , the following hold:

	​ σ(​z​−0​​ (x))  = ​ z​−0​​ (σ(x))  and  σ(​p​−0​​ (x))  = ​ p​−0​​ (σ(x)).​

Definition 2: The mechanism ​(z, p)​ is strategy-proof if, for all ​n  ≥  2​ , all ​
x  ∈ ​ ℝ​ +​ n ​​ , all ​i  ∈  {1, … , n}​ , and all ​​​x ̂ ​​i​​​ ,

	​ ​x​i​​ ​z​i​​ (x) − ​p​i​​ (x)  ≥ ​ x​i​​ ​z​i​​ (​​x ̂ ​​i​​ , ​x​−i​​) − ​p​i​​ (​​x ̂ ​​i​​ , ​x​−i​​).​

The mechanism ​(z, p)​ is winner false-name proof if no bidder can benefit by sub-
mitting multiple bids, meaning that for all ​n  ≥  2​ , ​x  ∈ ​ ℝ​ +​ n ​​ , all ​m  ≥  1​, and all ​
y  ∈ ​ ℝ​ +​ m ​​:

	​ ​x​i​​ ​z​i​​ (x)  − ​p​i​​ (x)  ≥  ​ x​i​​​(​z​i​​ (x, y)  + ​ ∑ 
j=1

​ 
m

 ​​ ​z​n+j​​ (x, y))​ − ​(​p​i​​ (x, y)  + ​ ∑ 
j=1

​ 
m

 ​​ ​p​n+j​​ (x, y))​.​

A mechanism ​(z, p)​ is loser false-name proof if no bidder ​i​ can harm its competitors 
by submitting lower additional bids: that is, if for all ​n  ≥  2​ , ​x  ∈ ​ ℝ​ +​ n ​​ , ​m  ≥  1​ , and ​
y  ∈ ​ ℝ​ +​ m ​​ satisfying ​max y  ≤ ​ x​i​​​ , the following holds for ​j  ≠  i​:

	​ ​x​j​​ ​z​j​​ (x) − ​p​j​​ (x)  ≥ ​ x​j​​ ​z​j​​ (x, y) − ​p​j​​ (x, y).​

The mechanism ​(z, p)​ is fully strategy-proof if it is strategy-proof, winner false-name 
proof, and loser false-name proof.

We also formalize the idea that a mechanism should award brand advertisers a 
representative sample of impressions for any distribution of match and common 
values. We think of this as a robustness criterion: if the mechanism has this property, 
then the publisher and brand advertiser do not need to agree on details of the envi-
ronment. Both agree that the value awarded to the brand advertiser is simply ​E[ ​X​0​​ ]​ 
times the number of impressions awarded, regardless of their beliefs about ​C​.

Definition 3: A mechanism ​(z, p)​ is adverse-selection free if, for every joint dis-
tribution of ​(C, M)​ such that ​M​ is independent of ​C​ , ​​z​0​​ (CM)​ is also independent  
of ​C​.

We now turn our attention to a simple class of mechanisms that have all of the 
properties above: the family of modified second bid (MSB) auctions. These auctions 
offer the impression to the top bidder at a price equal to ​α​ times the second highest 
bid for some ​α  ≥  1​. If the top bidder is unwilling to pay this price, the impression 
may be awarded to the brand advertiser.

Definition 4: A mechanism ​(z, p)​ is a modified second bid auction if there exists ​
α  ≥  1​ such that for ​i  =  1, … , N​ ,
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	 (i)	 either ​​z​i​​ (x)   = ​ 1​​x​i​​>α max ​x​−i​​​​​ , or ​α  >  1​ and ​​z​i​​ (x)   = ​ 1​​x​i​​≥α max ​x​−i​​​​​ ,

	 (ii)	​ ​p​i​​ (x)   = ​ z​i​​ (x)  · α max ​x​−i​​​ ,

	 (iii)	​ ​z​0​​ (x)   ∈  { 0, 1}​ , with ​​z​0​​ (x)   ≤  1 − ​∑ i=1​ N  ​​ ​z​i​​ (x)​.

The sole distinction between the two cases in the first condition is whether per-
formance bidder ​i​ wins or loses when it bids exactly its threshold price ​α max ​x​−i​​​. 
The third condition states that the brand advertiser wins only when no performance 
advertiser does, but allows for the possibility that the impression remains unassigned.

It turns out that modified second bid auctions are the only deterministic5 mecha-
nisms that satisfy the properties given above.

Theorem 1: A deterministic mechanism ​(z, p)​ is anonymous, fully strategy-proof, 
and adverse-selection free if and only if it is a modified second bid auction.

Theorem 1 characterizes MSB auctions as the unique auctions which are anon-
ymous, deterministic, adverse-selection free, and fully strategy-proof in a setting 
where bidders may create multiple identities. We note here that other auctions may 
have any three of these properties. Relaxing anonymity allows the value of ​α​ to 
depend on the bidder. Relaxing determinism permits mechanisms that randomly set 
aside opportunities for the brand advertiser and award the rest via a second-price 
auction among performance advertisers. A second-price auction with reserve (cor-
responding to the brand advertiser’s bid) is deterministic, anonymous, and fully 
strategy-proof, but not adverse-selection free. Finally, consider the auction in which 
the highest bidder wins whenever its bid is at least twice the lowest competing bid 
and, in that case, pays the higher of the second-highest bid and twice the lowest bid. 
This mechanism is deterministic, anonymous, and adverse-selection free, but not 
fully strategy-proof.

In the remainder of the paper, we use the notation MSB​​​​α​​​ to denote the mod-
ified second bid allocation rule with parameter ​α​ in which ​​z​i​​ (x)  = ​ 1​​x​i​​>α max ​x​−i​​​​​ 
and ​​z​0​​ (x)  =  1 − ​∑ i=1​ N  ​​ ​z​i​​ (x)​.

VI.  Performance Analysis

Although we have characterized MSB auctions as the only mechanisms that are 
deterministic, anonymous, false-name proof, and adverse-selection free, it is not 
clear that these properties are necessary. Perhaps shill bidding can be identified and 
prevented by other means. Additionally, the publisher may be able to convince the 
brand advertiser to accept below-average impressions in return for a lower price. If 
so, it is reasonable to wonder whether these axioms are costly, and whether we could 
achieve notably better performance by abandoning them.

In this section, we demonstrate that in important cases, MSB auctions per-
form nearly as well as their optimal counterparts. We consider a setting in which 

5 A mechanism ​(z, p)​ is deterministic if ​​z​i​​ (x)   ∈  { 0, 1}​ for all ​i​ and all ​x​. 
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performance match values are i.i.d. (i.e., ​​F​i​​  =  F​ for ​i  ∈  { 1, … , N }​). Our first 
result states that for arbitrary ​F​ , MSB auctions guarantee one-half of the value deliv-
ered by OMN, and the guarantee provided by OPT is no better. Our second result is 
that if ​F​ corresponds to a power law distribution, then MSB auctions capture at least 
94.8 percent of the value delivered by OMN. In this case, any gains from adopting 
OPT are necessarily modest.

Proposition 3:

	 (i)	 For any ​γ  >  0​ , ​N​ , ​​F​i​​​ , ​G​ , and ​E[ ​M​0​​ ]​ , there exists ​α  ∈  { 1, ∞}​ such that

	​ V(MS​B​α​​)  ≥ ​  1 _ 
2
 ​ V(OMN) .​

	 (ii)	 For any ​γ, ϵ  >  0​ , there exists ​N​ , ​F​ , ​G​ , and ​E[ ​M​0​​ ]​ such that if performance 
match values are drawn i.i.d. from ​F​ ,

	​ V(OPT)   < ​ (​ 1 _ 
2
 ​ + ϵ)​ V(OMN).​

There are several possible interpretations of Proposition 3. In theoretical com-
puter science, constant-factor approximations are often celebrated, and Proposition 
3 states that no mechanism provides a better guarantee than that of MSB. However, 
many mechanisms (including the second-price auction) offer the same guarantee, so 
this argument does not justify the adoption of MSB auctions. Furthermore, the pos-
sibility of doubling match value is economically very meaningful. Thus, one possi-
ble conclusion from Proposition 3 is that worrying about the choice of mechanism is 
“barking up the wrong tree”: the real gains may come from better information about 
the common value component.

We offer a third interpretation: perhaps worst-case analysis is overly pessimis-
tic and the distributions used in the proof of Proposition 3 are unrealistic in some 
way. In particular, it has been observed that in online advertising, a large fraction 
of the total value comes from a small number of very valuable impressions. That 
is, the distribution of advertiser values can be said to be heavy-tailed. Motivated 
by this thought, in Theorem 2, we consider the case where match values are drawn 
independently from a power law distribution. Under this assumption, the somewhat 
pessimistic conclusion of Proposition 3 reverses sharply.

Theorem 2: Suppose that ​N​ is deterministic and that the performance match val-
ues are i.i.d. draws from a power law distribution. Then for any ​γ  >  0​ , there exists ​
α  ≥  1​ such that the following hold simultaneously:

 ​ ​V​B​​ (MS​B​α​​)  = ​ V​B​​ (OMN)​;
 ​ ​V​P​​ (MS​B​α​​)  ≥  0.885 · ​V​P​​ (OMN);​
 ​ V(MS​B​α​​)  ≥  0.948 · V(OMN)​.

Although the assumptions in Theorem 2 are strong, so are the conclusions. 
Suppose that the publisher contracts with the brand advertiser and commits to using 
an allocation rule ​z​ such that ​​V​B​​ (z)   ≥ ​ v​B​​​ , for some ​​v​B​​  ∈  (0, E[ ​X​0​​ ])​. Subject to this 



2864 THE AMERICAN ECONOMIC REVIEW october 2016

constraint, the publisher aims to maximize the value of allocations to performance 
advertisers.6 Theorem 2 states that it is possible to choose ​α​ such that under ​MS​B​α​​​ , 
the contract is fulfilled and performance advertisers get at least ​88.5 percent​ of the 
value that could be delivered to performance advertisers if the publisher directly 
observed ​C​. Furthermore, the third component of the theorem implies that if the 
value of the contract with the brand advertiser is chosen optimally, then an MSB 
auction delivers at least ​94.8 percent​ of the value of the first-best solution. These 
results hold for any weight of the power law tail, expected brand value ​E[ ​X​0​​ ]​ , dis-
tribution of ​C​ , and number of performance advertisers ​N​. In particular, this implies 
that when match values follow a power law, ​MSB​ auctions are nearly optimal even 
in cases where ​C​ has a degenerate distribution (so that adverse selection is of no 
concern). Finally, our result that a second-price auction may attain only ​50 percent​ 
of the performance of OMN is directly comparable, because the examples discussed 
in Section III are ones in which match values follow a power law distribution. Taken 
together, these facts suggest that when match values are heavy-tailed:

	 (i)	 the benefit of moving from a second-price auction to an MSB auction may be 
significant;

	 (ii)	 protecting against adverse selection and shill bidding may have little cost; 
and

	 (iii)	 the potential gains from accurate information about ​C​ may be minimal.

We now turn to the question of how to choose ​α​. Theorem 2 states that there exists 
a “good” choice of ​α​ , but offers no guidance on how to find it. This turns out to be 
straightforward. So long as the publisher knows the brand advertiser’s average value 
and the joint distribution of the top two performance bids (which can be learned, for 
example, using data from previous auctions), it is possible to compute, for any ​α​ , 
the value of the resulting allocation for both brand and performance advertisers. This 
allows the publisher to select ​α​ optimally. Alternatively, if the publisher has already 
promised the brand advertiser a certain fraction of impressions, ​α​ can simply be set 
to ensure that this guarantee is met. Importantly, these calculations do not rely on 
assuming that performance match values are independent, identically distributed, 
or follow a particular distribution, nor do they rely on any assumptions about the 
(unobserved) common value ​C​: the only assumption is that ​C​ is independent of the 
vector of match values.7 By contrast, the optimal reserve in a second-price auction 
depends on the joint distribution of brand and performance advertiser values.

We now consider the revenue generated by MSB auctions. Although our primary 
focus in this paper is allocative efficiency, the publisher naturally cares about how 
this surplus is divided. In order to address this topic, we must posit a division of 
the surplus generated by impressions allocated to the brand advertiser—a point on 
which we have so far remained agnostic. We suppose that the publisher and brand 

6 Although in Theorem 2 the publisher’s goal is to maximize ​γ ​V​B​​ (z)  + ​V​P​​ (z)​ , there is a well-known equiva-
lence between this approach and that of maximizing ​​V​P​​ (z)​ subject to a lower bound on ​​V​B​​ (z)​. 

7 In the power law case, the optimal choice is ​α  =  max (1, γE[ ​X​0​​ ] / E[ ​X​(2)​​ ])​. 
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advertiser split this surplus proportionately; that is, the revenue to the publisher 
is ​δ ​V​B​​​ , for some ​δ  ∈  (0, 1)​. It turns out that when match values follow a power 
law distribution with parameter ​a​ , for any strategy-proof mechanism ​z​ , publisher 
revenues from performance advertisers are at most ​(1 − ​a​​ −1​) ​V​P​​ (z)​ (see the online 
Appendix for details). Thus, in this setting, maximizing revenue is effectively equiv-
alent to maximizing ​δ ​V​B​​ + (1 − ​a​​ −1​) ​V​P​​​. It follows that there exists an MSB auction 
that delivers at least ​94.8 percent​ of the maximum revenue that could be achieved by 
any strategy-proof mechanism, even if ​C​ were observed. We state this below.

Corollary 1: Suppose that ​N​ is deterministic, that performance match values 
are i.i.d. draws from a power law distribution, and that the publisher and brand 
advertiser split surplus in any fixed proportion. Then there exists ​α​ such that ​MS​B​α​​​ 
delivers at least ​94.8 percent​ of the revenue of any strategy-proof auction.

VII.  Conclusion

In this paper, we consider the performance of certain auctions when bidder values 
are correlated and some bidders are uncertain of their values. We introduce modi-
fied second bid auctions as the only anonymous, deterministic mechanisms that, in 
our model, are fully strategy-proof and free of adverse selection. We demonstrate 
that when match quality is distributed according to a power law distribution, MSB 
auctions may significantly improve upon more traditional second-price auctions and 
capture nearly all of the value obtained by an omniscient benchmark.

Our work makes two contributions: one methodological and one practical. On 
the methodological side, we believe that the “not-quite-optimal mechanism design” 
approach used in this paper is a generalizable and appealing way to derive and ana-
lyze new mechanisms. Our approach begins the same way as others in a long tra-
dition in economics, that is, by identifying a candidate class of mechanisms as the 
only ones with certain desirable properties. These axioms, however, are not opti-
mality properties. So, mechanism in hand, our approach evaluates the costs of our 
axioms by providing performance guarantees for efficiency and revenue relative to 
the unrestricted optimal mechanism.

On the practical side, we demonstrate that when allocating impressions jointly 
to advance contracts and spot market bidders, traditional reserve-based approaches 
may leave significant match value “on the table.” There may be notable gains to 
using a mechanism that adaptively sets a reserve based on submitted bids, as the 
MSB mechanism does. Furthermore, our results suggest that it may be possible 
to realize most of these gains using a mechanism that is simple to understand and 
implement.

Like all economic models, the one in this paper includes many simplifications. 
Although the MSB auction is quite generally fully strategy-proof, two of our other 
theoretical findings rely on statistical independence assumptions. First, the proof 
that MSB auctions are adverse-selection free uses the assumption that the brand 
advertiser’s value is statistically independent of a particular set of ratios—those 
between the values of different performance advertisers. Without that independence 
assumption, MSB auctions would not be adverse-selection free, although they would 
still be approximately so if the independence condition is approximately satisfied. 
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Second, the good efficiency and revenue performance of the MSB compared to an 
omniscient mechanism relies on the assumed independence among performance 
advertiser match qualities. If performance advertisers selling similar products tar-
get the same users, that could lead to positively correlated match qualities. Then, 
the signature that the MSB mechanism utilizes to identify good matches—a single 
performance bid that is sufficiently larger than the others—might miss some good 
matches, degrading the mechanism’s performance.

The problem of achieving good matching when bidders’ values have both private 
and common quality components is not unique to the setting discussed in this paper. 
One closely related example is the problem of matching advertisers to opportunities 
on social media sites such as Facebook. Suppose that one advertiser launches a cam-
paign targeting university students, and offers to pay ​$1​ for each click. Meanwhile, 
a second advertiser targets students in STEM (science, technology, engineering, and 
mathematics) fields, and offers ​$1.25​ for each click. If the two ads have the same 
estimated click-through rates, then all STEM students will be won by the second 
advertiser, leaving the first with an unrepresentative set of students. If, in fact, the 
first advertiser has a value of ​$1.50​ for students in STEM and ​$0.50​ for all other 
students, this outcome is inefficient. Rather than requiring every advertiser to esti-
mate its value for each narrow subset of users, it may be possible to mitigate adverse 
selection and improve allocative efficiency by using mechanisms (such as MSB auc-
tions) that score bids according to the breadth of their target audience. The question 
of how best to achieve this is one interesting direction for future work.
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