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Abstract

In a Shapley–Shubik assignment problem with a supermodular output matrix, we consider games in
which each firm makes a take-it-or-leave-it salary offer to one applicant, and a match is made only when the
offer is accepted by her. We consider both one-shot and multistage games. In either game, we show that there
can be many equilibrium salary vectors which are higher or lower than the minimum competitive salary
vector. If we exclude artificial equilibria, applicants’ equilibrium salary vectors are bounded above by the
minimal competitive salary vector, while firms’ equilibrium payoff vectors are bounded below by the payoff
vector under the minimum competitive salary vector. This suggests that adopting the minimum competitive
salary vector as the equilibrium outcome in decentralized markets does not have a strong justification.
© 2008 Elsevier Inc. All rights reserved.

JEL classification: C71; C72; C78; J20; J30

1. Introduction

As is described in Roth (1984) and Roth and Sotomayor (1990) the centralized match-
ing procedure in the US medical resident market—the National Residency Matching Program
(NRMP)—has been a tremendous success. NRMP uses the deferred-acceptance matching al-
gorithm developed in Gale and Shapley (1962) with a salary vector chosen by hospitals prior
to the matching procedure in order to assign senior medical students to residency programs at
participating hospitals. The introduction of NRMP helped reduce the early contract craze and
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last-minute congestion that resulted under the decentralized system, and the NRMP participation
rate by both students and hospitals has been very high.

In 2002, however, a lawsuit against teaching hospitals and NRMP was filed alleging that
the system violated federal antitrust law (in that, for example, it restrained competition). This
lawsuit could have had a significant impact on the medical market: one possible consequence
was abandonment of the NRMP and other medical matching programs.1

Recently, Bulow and Levin (2006) set up an interesting matching model that can compare the
centralized matching mechanism that has characteristics of NRMP with a decentralized market.
Bulow and Levin (2006) employ a simplified version of the assignment model in Shapley and
Shubik (1971), and consider a two-stage game. In the first stage, hospitals simultaneously de-
cide salaries, and in the second stage the Gale–Shapley deferred-acceptance matching algorithm
takes place, using the preferences of hospitals and residents generated by the price vector deter-
mined in the first stage. Thus, their game mimics the matching program of the NRMP. Bulow and
Levin (2006) characterize a mixed-strategy equilibrium of the game, and compare the expected
equilibrium salary of each resident in the game with her minimum competitive salary. The mini-
mum competitive salary (vector) is the lowest market equilibrium salary vector under which the
surplus-maximizing assignment of hospitals and residents is stable (Shapley and Shubik, 1971).
The main finding of their paper is that under the centralized system, salaries and applicants’
payoffs are more suppressed than they are under the decentralized system.

Although the result of Bulow and Levin (2006) appears to suggest the benefits of a decentral-
ized market,2 the notion of the minimum competitive salary does not really fit with an equilibrium
outcome of a decentralized resident-hospital matching market. Since each resident is a hetero-
geneous commodity, the minimum competitive salary can be attained as a result of a Vickrey
auction in the centralized multi-object auction market. However, this mechanism clearly also
requires a centralized auction market. It is not clear what kind of decentralized salary vector
emerges under a decentralized market given the typical bilateral job offers in the resident-hospital
market.

In this paper, we analyze equilibria of noncooperative games that describe decentralized
markets using the Shapley–Shubik assignment model. Following Bulow and Levin (2006), we
assume that the output matrix is supermodular (slightly more general than the one in Bulow and
Levin), and we consider games in which each firm chooses an applicant and makes a take-it-
or-leave-it salary offer and a match is made only when the offer is accepted by the applicant.3

We consider both one-shot and multistage games. Although these games are too simplistic to
describe to be taken to real-world market institutions, they can be regarded as a first step in an
attempt to analyze the equilibrium salary vectors in a decentralized labor market for entry-level
professionals such as the one for medical interns.

1 This lawsuit was dismissed in 2004 following the president’s signing a rider law (the Pension Funding Equity Act of
2004) exempting NRMP from antitrust lawsuits.

2 Bulow and Levin (2006) caution that their result does not directly indicate that NRMP suppresses the wages of
medical residents, since NRMP can use enormous amounts of information nationally whereas a decentralized system
tends to match agents locally.

3 We adopt a setup in which firms make only a limited number of offers (constrained by the number of slots) to
applicants, following the literature on timing of transactions and congestion in market clearing (Roth and Xing, 1994;
Niederle and Roth, 2007; and Niederle et al., 2006). As examples of those markets, Roth and Xing (1994) list many
entry-level professional labor markets including the US medical intern markets mentioned in Roth (1984) and Bulow and
Levin (2006), and the adopted setup applies to these markets. The “take-it-or-leave-it” offer assumption is certainly for
simplification. This assumption is also commonly made in the literature.
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The results of the paper are as follows. In a one-shot simultaneous move game, in many cases,
a mixed strategy equilibrium makes more sense. In all mixed-strategy equilibria, the highest
possible realization of a salary vector is the minimum competitive equilibrium salary vector:
i.e., applicants’ expected utilities are lower than the minimum competitive salaries. On the other
hand, firms get exactly the same expected payoffs under the minimum competitive salary vector
as they do in all mixed-strategy equilibria (Proposition 1). In contrast, a pure strategy equilibrium
may not exist (Proposition 2), and even if it does, it is somewhat artificial and weakly dominated,
and the equilibrium vanishes if there is a small cost attached to making offers. However, when
there exists a pure strategy equilibrium, there are many equilibria, and pure strategy equilibrium
salaries can be higher or lower than the minimum competitive salaries (Example 2).

In a multistage model, we show that if each offer has no deadline, that is, if each offer is
valid until it has been accepted or rejected (an “open offer” assumption),4 there is a stationary
Markov perfect equilibrium that achieves the minimum competitive salary vector (Proposition 3).
This equilibrium actually attains the highest salary vector among all stationary Markov perfect
equilibria in pure strategies if we do not allow rejections on the equilibrium path (Proposition 4).5

If rejections are allowed to occur on the equilibrium path, then there are many equilibria, and an
applicant may get a higher salary than the minimum competitive salary (Example 4). However,
these rejections on the equilibrium paths have an artificial and pathological nature (a firm has an
incentive to give a candidate an unreasonable offer in order to get a rejection, since the rejection
changes the equilibrium path in the firm’s favor).6

These results seem to indicate the following. First, in decentralized markets, if artificial equi-
libria are allowed, then there are many equilibrium salary vectors that can be higher or lower
than the minimum competitive salary vector. Second, if we exclude artificial equilibria, then the
minimum competitive salary vector is the best-case scenario for applicants in the decentralized
market. That is to say, the reference salary vector adopted by Bulow and Levin (2006) for the
decentralized market outcome might not have a strong justification, and could be regarded as
rather optimistic.

The rest of the paper is organized as follows. In the rest of the introduction, we briefly discuss
the relevant literature. Section 2 presents the Shapley–Shubik model with a supermodular and
increasing output matrix. In Section 3, a simultaneous-move game is analyzed. In Section 4,
a multistage game with open offers is analyzed. Section 5 concludes, and Section 6 collects all
proofs.

4 An offer is called open if the offer is valid until it has been accepted or rejected by the applicant who received it. In
contrast, an offer is called exploding if an applicant who receives it needs to either accept or reject it immediately, and
she will not be able to receive another offer from the same firm in future if she rejects it. In the literature of congestion
in market clearing, using open offers seems to make the market more efficient than using exploding offers, so we are
adopting a conservative assumption.

5 There are stationary Markov perfect equilibria with lower salaries including a zero-salary vector without rejections
on the equilibrium path (when the number of firms is less than the one applicant).

6 Although these equilibria are somewhat artificial, they are robust equilibria in the sense that their strategies are not
weakly dominated and they survive small costs of making offers. Thus, one way to interpret this result is that without
further restrictions on strategies, many different outcomes can be supported as stationary Markov perfect equilibria even
under the open offer assumption.
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1.1. Literature review

The conclusion of this paper, that the minimum competitive salary vector may not be a good
approximation of equilibrium outcome in decentralized markets, can be interpreted as at odds
with the result of Bulow and Levin (2006), that the centralized matching program tends to
suppress applicants’ salaries, since they use the minimum competitive salary vector as the decen-
tralized market outcome. In contrast, Kojima (2007) and Niederle (in press) question the policy
implications of Bulow and Levin (2006) regarding the NRMP from different viewpoints. Keep-
ing the minimum competitive salary as the reference for decentralized markets, they modify the
centralized matching market in a way that is more appropriate to the NRMP. Kojima (2007) ex-
tends the Bulow–Levin model to a many-to-one matching problem, and presents an example in
which the unique equilibrium salary vector dominates the minimum competitive salary vector.
Niederle (in press) notes that the NRMP allows for ordered contracts, or reverting positions.
Programs that try to fill a position under a certain contract can, if they do not find a suitable can-
didate, change that contract to one under a different contract. Given this feature, she finds that
there is a pure strategy Nash equilibrium in which the equilibrium salary vector coincides with
the minimum competitive salary vector when hospitals use ordered contracts. Thus, these papers
and the current paper may complement each other.

There is an extensive literature on the labor market with frictions.7 Shimer (2005) in particular
is related to the static model of the current paper. He considers a model in which there are het-
erogeneous types of firms and applicants, and there is a continuum of clones in each type. In his
setup, each individual firm posts salaries for all types of applicants simultaneously, then appli-
cants apply for posted positions with symmetric mixed strategies.8 Each individual firm chooses
one from its applicant pool. Rejected applicants and (ex post) no-applicant firms are unmatched.
With this setup, Shimer (2005) proves that there is a unique equilibrium that achieves constrained
efficiency.9 Moreover, Shimer finds an imperfectly assortative matching as the unique equilib-
rium outcome in the case of multiplicative output matrices. In our static game, there are also
frictions due to the usage of mixed strategies, and there is ex post mismatch in otherwise assor-
tative matching. However, there are differences. First, whereas in Shimer (2005) the source of
inefficiency is the social planner’s technology constraint motivated by large markets, the ineffi-
ciency in our match equilibrium comes from each firm’s exercising its monopoly power and the
resulting strategic interactions.10 Second, more importantly, in our model, we assume that firms
make offers to applicants and applicants accept or reject the offers. This setup is more appropri-
ate to describing professional labor markets with heterogeneous applicants, such as the market
for medical interns (Roth, 1984, and Bulow and Levin, 2006). Roth and Xing (1994), Niederle
and Roth (2007), and Niederle et al. (2006) discuss how such markets for professionals work and
adopt a setup in which firms make one offer at each time in one-to-one matching problems. The

7 See a nice survey by Rogerson et al. (2005).
8 Shimer (2005) calls it an “anonymity” restriction which means that identical type workers use identical mixed strate-

gies in the second stage of the game. Thus, identical type workers apply for each individual firm of an identical type
with an equal likelihood. That is, Shimer concentrates on symmetric strategies within identical types of workers. Firms
also do not distinguish individual workers of the same type (offer the same wages). In contrast, he does not impose a
symmetry restriction on identical firms’ strategies: instead, he proves that identical firms play identical strategies in the
equilibrium.

9 Frictions are from coordination failure among workers. Shimer (2005) argues that in large market, it is natural to have
coordination failures due to anonymity of participants.
10 We thank one of the referees for making this insightful remark.
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most familiar example may be the market for fresh PhD economists. In contrast, Shimer’s wage
posting game is probably more appropriate to describing standard large labor markets with less
heterogeneous applicants, since wage posting make more sense with many anonymous applicants
within the same type.11

Related to our dynamic model, there are papers that formalize decentralized markets in more
realistic ways than ours. Roth (1984) describes how the decentralized market operated prior to the
NRMP period. Due to a shortage of interns, hospitals attempted to finalize binding agreements
with residents earlier than competitors. As a result, the date by which most contracts had been
finalized crept forward (unraveling). To fix this coordination problem, the Association of Amer-
ican Medical Colleges (AAMC) prohibited early contracts prior to a certain date. Although this
practice proved to be effective in resolving unraveling, it led to a new problem: a student who got
an offer from one hospital would wait as long as possible before accepting the offered position
in the hope of getting an offer from a preferable hospital. So, to speed up the matching process,
deadlines for accepting offers became shorter and shorter, leading to exploding offers. From these
observations, Roth and Xing (1994) formulate interesting multiperiod strategic models of bilat-
eral matching markets with and without endogenous salaries. They show that all subgame perfect
equilibria are inefficient due to inefficient unraveling. Recently, Niederle and Roth (2007) and
Niederle et al. (2006) set up multiperiod incomplete information models with fixed salaries, and
analyze the conditions (market cultures and demand and supply conditions, respectively) under
which unraveling can occur in equilibrium and thus result in inefficient outcomes. In the current
paper, in contrast, we introduce neither inefficiency due to early contracting nor inefficiency due
to exploding offers. We focus on equilibrium salaries by employing simplifying assumptions.
A possible interpretation of our results in the multistage game (especially Example 4) is some-
what negative: even if there is no inefficiency due to early contracts or exploding offers, and
even under perfect and complete information, there is a continuum of equilibrium salary vectors
that can be above or below the minimum competitive salary vector, even after refining equilibria
by imposing stationary Markov and weakly dominant restrictions on players’ strategies, or by
assuming that making offers is costly.

There are two other loosely related papers on the implementation of stable matching with
endogenous salaries. Alcalde et al. (1998) and Hayashi and Sakai (2004) investigate the imple-
mentability of the stable matching correspondence in a many-to-one job matching problem with
a gross substitutable preference domain (Kelso and Crawford, 1982). Alcalde et al. (1998) show
that a stable matching correspondence is implementable in a subgame perfect equilibrium when
there are at least two firms. Hayashi and Sakai (2004), in contrast, show that the stable match-
ing correspondence is the minimum Nash-implementable correspondence satisfying individual
rationality and nondiscrimination. Our work differs from theirs in two ways. First, the domains
of the problems are different. It may appear that a many-to-one matching model with gross sub-
stitutable preferences is more general than ours. However, since these papers allow each firm
to make multiple offers simultaneously, firms make offers to all acceptable applicants under the
“gross substitutability” assumption by Kelso and Crawford (1982). In contrast, in our model

11 If we apply Shimer’s setup to our specialized professional labor market (i.e., one worker for each type), posting
salaries for all types means posting salaries for all individual workers. (This case is the same as dropping “anonymity”
among workers: workers are allowed to use asymmetric pure strategies.) It is almost obvious to see that, in such a case,
there is a pure strategy subgame perfect equilibrium in which efficient matching is achieved with the minimum compet-
itive salary vector. This may sound like a nice result, but a wage posting game may be less appropriate to describing a
specialized labor market for professionals.
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firms can make one offer each (at one time). Thus, there is an opportunity cost of making an
offer to an applicant since a firm may miss the opportunity of hiring the second-best applicant by
making an unsuccessful offer to the most preferable applicant. This congestion effect makes our
problem very different from that of these two papers. Second, the purposes of these two papers
is to implement all stable matchings (competitive salary vectors), whereas we are interested in
one particular stable matching: the minimum competitive salary vector.

2. The Shapley–Shubik assignment problem with supermodular output matrix

There are two disjoint finite sets of agents, applicants and firms, denoted by A = {a1, . . . , am}
and F = {f1, . . . , fn}, respectively. We assume that each firm has exactly one position each.

The firm-applicant matching problem is described as an assignment model by Shapley and
Shubik (1971). Each firm hires at most one applicant, and the output that each pair of firms and
applicants can produce is described in the following n × m output matrix:

Y =

⎛
⎜⎜⎝

Y11 Y12 · · · Y1m

Y21 Y22 · · · Y2m
...

...
. . .

...

Yn1 Yn2 · · · Ynm

⎞
⎟⎟⎠ ,

where Yij > 0 denotes the amount of output a firm-applicant pair (fi, aj ) can produce together.
We assume that every argument of the matrix is positive. An assignment matrix is an m × n

matrix

X =

⎛
⎜⎜⎝

x11 x12 · · · x1n

x21 x22 · · · x2n
...

...
. . .

...

xm1 xm2 · · · xmn

⎞
⎟⎟⎠ ,

where (i) for each applicant aj ∈ A and for each firm i ∈ F , we have xji ∈ {0,1}, and (ii) for each
applicant aj ∈ A,

∑n
i=1 xji � 1 and for each firm fi ∈ F ,

∑m
j=1 xji � 1. This matrix describes

the matching between applicants and firms. An optimal assignment matrix X∗ is an assignment
matrix that maximizes the total production of this industry:

n∑
i=1

m∑
j=1

x∗
jiYij = max

X

n∑
i=1

m∑
j=1

xjiYij .

An outcome of the assignment problem is a list of an assignment and profit and salary vectors
(X,π , s) such that π = (π1, . . . , πm) ∈ R

m+, s = (s1, . . . , sn) ∈ R
n+, and xij = 1 iff πi + sj = Yij

and sj = 0 for aj ∈ A with
∑n

i=1 xij = 0 (zero salaries for applicants who are not assigned to
any firm). An outcome of an assignment problem is stable if for any fi ∈ F and for any aj ∈ A,
πi + sj � Yij . If an outcome (X,π , s) is stable then s is said to be a competitive salary vector,
and s∗ is said to be the minimum competitive salary vector if s∗ is a competitive salary vector,
and s∗ � s′ holds for any competitive salary vector s′. The minimum competitive salary vector
can be determined by a multi-object ascending price auction algorithm formulated by Demange
et al. (1986). Strict supermodularity and strict increasingness give us an explicit formula for the
minimum competitive salary.

In this paper, we additionally assume that the output matrix is strictly supermodular if for
any fi ∈ F and for any aj ∈ A

Yij − Yij+1 > Yi+1j − Yi+1j+1,
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and strictly increasing if for any fi ∈ F and for any aj ∈ A

Yij − Yij+1 > 0 and Yij − Yi+1j > 0.

We assume that Y is strictly supermodular and strictly increasing throughout the paper.12 These
assumptions guarantee that there is a unique optimal assignment matrix X∗ that is assortative,
i.e. xii = 1 for any i = {1, . . . ,m}. The following lemma characterizes the minimum competitive
salary vector.

Lemma 1. If the output matrix Y is strictly supermodular and strictly increasing then the mini-
mum competitive salary vector is s∗ = (s∗

1 , . . . , s∗
m), where (i) s∗

j = ∑n−1
j ′=j (Yj ′+1j ′ − Yj ′+1j ′+1)

for any j � n − 1 and s∗
j = 0 for j � n when n � m, and (ii) s∗

j = Ymm + ∑m−1
j ′=j (Yj ′+1j ′ −

Yj ′+1j ′+1) for any j � m − 1 and s∗
m = Ym+1m when n > m.

3. One-shot game

Consider a one-shot game. Each firm fi decides which applicant to make an offer to, and
how much salary to offer her. We assume that an offer is a take-it-or-leave-it offer. All firms
make simultaneous offers, and applicants choose the best offer if they receive multiple offers. We
assume the following tie-breaking rule: if an applicant aj receives offers from fi and fi′ with the
same salaries (i < i′), then aj prefers fi to fi′ . If an applicant accepts an offer a match is made.
There is no aftermarket as in Shimer (2005). As we shall see below, a mixed-strategy equilibrium
is more interesting in this game, so we will start with analyzing mixed-strategy equilibria.

Let G = (Gij )fi∈F,aj ∈A be a mixed-strategy profile, where Gij (s) ∈ [0,1] is the probability
that fi offers a salary s′ � s to applicant aj . Let s̄ij be the lowest upper bound of the support
of Gij : s̄ij ≡ min sij ∈ R+ subject to Gij (s̄ij ) = Gij (∞), and let s̄j = maxfi∈F s̄ij . That is, s̄j is
the highest possible salary realization for applicant aj under a strategy profile G. Given a strat-
egy profile G, let wij (s) = Πi′ �=i (1 − (Gi′j (s̄j ) − Gi′j (s))). This function denotes fi ’s winning
probability of hiring aj by offering s to aj , since Gi′j (s̄j ) − Gi′j (s) is the probability that fi′
makes a better offer to aj . Let ui(G) and vj (G) be the equilibrium payoff of fi and aj , respec-
tively (i = 1, . . . , n and j = 1, . . . ,m). The main result of this section is the characterization of
mixed-strategy equilibria.

Proposition 1. Suppose that Y is strictly supermodular and strictly increasing, and that n � 2
and m � 2. In any mixed-strategy equilibrium G in a one-shot game, we have: for all i = 1, . . . , n

and all j = 1, . . . ,m, (i) s̄j = s∗
j for all j = 1, . . . ,m, (ii) ui(G) = Yii − s∗

i for all i � min{n,m}
and ui(G) = 0 if n > m, and (iii) vj (G) < s∗

j for all j � min{n − 1,m} and vj (G) = s∗
j = 0 for

all j > min{n − 1,m}.

Since a realized outcome of the game may leave some firms and applicants unmatched under
a mixed-strategy equilibrium, it may not be surprising that applicants’ payoffs are lower than the
minimum competitive salaries (result (iii)). However, it is interesting that the very best realization
(with a zero measure) for each applicant is the minimum competitive salary (result (i)), and firms

12 The frequently used multiplicative output matrix and semi-multiplicative output matrix in Bulow and Levin (2006)
satisfy both supermodularity and increasingness. However, note that for simplicity, we do not allow indifference (by
assuming “strictness”).
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earn exactly the same expected profits as under a stable matching with the minimum competitive
salary vector (result (ii)). That is, all costs of mismatch are levied on applicants in our game. To
see what mixed-strategy equilibrium looks like, we provide a simple example.

Example 1. Consider the case where m = n = 3.

Y =
(

Y11 Y12 Y13
Y21 Y22 Y23
Y31 Y32 Y33

)
=

(9 6 3
6 4 2
3 2 1

)

In this example, we have a unique mixed-strategy equilibrium. By Proposition 1, the upper
bound vector s∗ = (s∗

1 , s∗
2 , s∗

3 ) = (3,1,0). Since each firm is indifferent between playing pure
strategies that are supported by its mixed strategy, we have

w11(s1)(9 − s1) = 6,

w21(s1)(6 − s1) = w22(s2)(4 − s2) = 3,

w31(s1)(3 − s1) = w32(s2)(2 − s2) = w33(s3)(1 − s3) = 1.

Note that given Y , f1 and f2 have no incentive to make offers to a2 or a3, and to a3, respectively.
The equilibrium strategy profile G that satisfies the above is as follows13:

• Firm f1 makes an offer to a1 only: s1 = 0 with probability 1
2 , and s1 ∈ (0,3] with density

3
(6−s1)

2 .

• Firm f2 makes an offer s1 ∈ (0,3] to a1 with density 6
(9−s)2 , an offer s2 = 0 to a2 with

probability 1
6 , and s2 ∈ (0,1] with density 1

(2−s)2 .

• Firm f3 does not make an offer to a1, makes an offer s2 ∈ (0,1] to a2 with density 3
(4−s)2 ,

and an offer s3 = 0 to a3 with probability 3
4 .

Given these strategies, we can calculate the expected utility of applicants. First, by Proposi-
tion 1, firms get the same expected payoff as they do under the minimum competitive equilibrium;
thus u(G) = (6,3,1). Second, given strategy profile G, firm fi ’s winning probability wij (sj )

when it makes an offer with salary sj to aj is as follows:

w11(s1) = 6

9 − s1
,

w21(s1) = 3

6 − s1
,

w22(s2) = 3

4 − s2
,

13 This equilibrium is found by a guess-and-verify method. Assume that f3 does not make an offer to a1. Then, f1’s
rival is only f2. Then, w11(s1) is dictated by f2’s mixed strategy. Thus, f2’s density function of making an offer to f1
is 3

(6−s1)2 , since the support of f2’s strategy is (0,3] by Claims 1, 2 and 4 in the proof of Proposition 1. Similarly, each

firm’s density function of making an offer to each applicant can be calculated. By our tie-breaking rule, f2 and f3 do not
play s1 = 0 and s2 = 0, respectively. Thus, f1 and f2 are the only ones that play s1 = 0 and s2 = 0, respectively. These
pin down the equilibrium strategies. Instead, if we assume that f3 makes an offer to a1 with a positive probability, we
reach a contradiction. Thus, we have a unique mixed-strategy equilibrium in this example.
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w32(s2) = 1

2 − s2
.

Thus, we have

v1(G) =
3∫

0

s1
3

(6 − s1)2

6

9 − s1
ds1 +

3∫
0

s1
3

(9 − s1)2

3

6 − s1
ds1

= 1.0478,

v2(G) =
1∫

0

s2
1

(2 − s2)2

3

4 − s2
ds2 +

1∫
0

s2
3

(4 − s2)2

1

2 − s2
ds2

= 0.3918,

v3(G) = 0.

The resulting expected salary vector is v(G) = (1.0478,0.3918,0). By summing up all the
payoffs, we obtain

3∑
i=1

ui(G) +
3∑

j=1

vi(G) = 11.4396.

Under the minimum competitive equilibrium salaries, the total surplus is
∑3

i=1 Yii = 14, and the
efficiency loss is 2.5604 or 18.28%.

It may be interesting to compare our result with the one in Bulow and Levin (2006). Bulow
and Levin (2006) analyzed the performance of a centralized matching procedure with a preplay
stage of a game of salary determination. They showed that there is only a mixed-strategy equi-
librium, and the equilibrium payoffs for firms are higher while the payoffs for applicants are
mostly lower under the centralized matching procedure than under the minimum competitive
equilibrium salaries. In this example we see

Firms Bulow–Levin’s
centralized

Min. competitive
equation

Our game

u1 6.67 6.00 6.00
u2 3.67 3.00 3.00
u3 1.00 1.00 1.00

Applicants Bulow–Levin’s
centralized

Min. competitive
equation

Our game

v1 1.56 3.00 1.05
v2 0.73 1.00 0.39
v3 0.02 0.00 0.00

Thus, applicants’ expected payoffs in the centralized matching procedure in Bulow and Levin
(2006) are mostly worse than in the minimum competitive equilibrium outcome, but the appli-
cants’ equilibrium payoffs in our one-shot offer-acceptance game are even worse than Bulow
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and Levin’s. The sum of expected payoffs of all players in the centralized matching procedure is
13.65, so the efficiency loss is only 2.5% compared with the 18.28% loss in our decentralized
matching. This is because in the centralized matching procedure, each applicant is matched with
at least some firms (although there can be mismatches). In contrast, our decentralized matching
leaves some applicants unmatched with any hospitals.

Finally, the reader may wonder about pure strategy equilibria. Unfortunately, there can be
pathological pure strategy equilibria that achieve a higher salary vector than the minimum com-
petitive salary vector in some cases. Consider the following example.

Example 2. Consider F = {f1, f2, f3, f4} and A = {a1, a2}. Suppose that f1 and f3 make s1 =
Y11 −ε−Y12 +Y22 offers to a1, and f2 and f4 make s2 = Y22 −ε offers to a2 with probability one
(ε is a small positive number). This is a pure strategy equilibrium, and s1 > s∗

1 and s2 > s∗
2 hold.14

This happens for the following reason. Under this strategy profile, f1 and f2 are matched with
a1 and a2 and get payoffs ε + Y12 − Y22 and ε, respectively, while f3 and f4 are unmatched and
get zero payoffs. Thus, f3 and f4 do not lose anything by making unreasonable offers. However,
in a pure strategy equilibrium, these unreasonable offers threaten f1 and f2, and force them to
make good offers.

This example is not robust in the sense that it cannot be an equilibrium with weakly dominant
strategies. Moreover, obviously, if we assume that making an offer is slightly costly, we can
exclude the possibility of a pure strategy equilibrium. We can also claim the following.

Proposition 2. If n � 2, m � 2, and n < 2m, then there is no pure strategy equilibrium in a
one-shot game.15

This proposition says that even if there is no cost to making an unsuccessful offer, there is
no pure strategy equilibrium as long as the number of firms is less than twice that of applicants.
Otherwise, there is a pure strategy equilibrium, but it is not robust in that the equilibrium involves
weakly dominated strategies and does not survive the introduction of low costs to making offers.

4. Multistage game

In this section, we consider a multistage game with a specific structure. The process of making
and accepting offers in the real world is very complex, and to simplify it we need to impose many
constraints. Moreover, we have to make detailed assumptions in order to specify a noncooperative
game. Obviously, the equilibrium of a game depends on the set of assumptions we impose. Our
strategy in choosing assumptions is to keep our game as simple as possible.

The game can be described as follows. We assume that each offer is an open offer that is valid
until the end of the game. This open offer assumption is not quite realistic, but we still see many
possible equilibria even with the open offer restriction.

14 The inequality s2 > s∗
2 is obvious. For the other inequality, note that s∗

1 = Y21 −Y22 +Y32. By strict supermodularity,
Y11 − Y12 > Y21 − Y22, and by strict increasingness, Y22 > Y32. Thus, s1 > s∗

1 holds, too.
15 If m = 1 and/or n = 1, then there is a pure strategy equilibrium. If m = 1, f1 gets a1 with salary Y21 if n � 2. If
n = 1, f1 gets a1 with a zero salary.
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There is a large finite number of stages � = 1,2, . . . ,L. Each firm fi decides which applicant
to make an offer to, at which stage to make the offer, and how much salary to offer her. We
assume that an offer is a take-it-or-leave-it offer: each firm fi can make only one offer to aj .16

This assumption says that once fi is rejected by aj , then fi cannot make any more offers to aj .
Each firm is allowed to have at most one outstanding offer at a time. This assumption may
be viewed as making the cost of multiple applicants for one position prohibitively high. We
assume that if no offer is made by any firm in a stage, then the game ends at that stage, and
unmatched firms and applicants at that time will not be matched in aftermarket activities. If this
assumption is not in place, then the last stage becomes important (in the last stage, a mixed-
strategy equilibrium is played which was discussed in the previous section). We also assume that
it costs a small amount to make an offer to an applicant. This assumption discourages firms from
making irrelevant offers.

Each applicant aj can accept or reject the offers she receives from firms. Once applicant aj

accepts an offer from firm fi they are matched and are out of the game: their contract is final
and cannot be renegotiated. Recall that each applicant cares only about salaries offered by firms,
unless the offered salaries are exactly the same. We retain the same tie-breaking rule introduced
in the previous section: if an applicant aj receives offers from fi and fi′ with the same salaries
(i < i′), then aj prefers fi to fi′ . We assume that if an applicant receives multiple offers, she will
reject all offers but one immediately (i.e., will keep or accept only the most preferable one). This
assumption is made in order to avoid unnecessary delays in the process.

We focus on a restrictive set of stationary Markov strategies, since there is a lot of freedom
even with the above constraints. We first need to introduce a concept: A state is a list of ap-
plicants who have not accepted an offer (active applicants), firms whose offers have not been
accepted (active firms), pending offers among active players (where each pending offer is a list
of a firm, an applicant, and a salary), and rejected offers among active players (each rejected
offer is a list of a firm and an applicant: the proposed salary is assumed to be irrelevant for a
rejected one). A stationary Markov strategy is a strategy for a player that maps a state to an
action. That is, each firm cares only about information such as who is available to it with what
conditions (a pending salary), and which firms are its potential competitors. Without stationarity,
making an irrelevant offer (an offer that would not be accepted in any case) may bring about a to-
tally different equilibrium in a subgame, which can affect the equilibrium outcome. A subgame
perfect equilibrium with stationary Markov strategies is called a stationary Markov perfect
equilibrium.

Formally, states are defined in the following manner: in stage �, let F ′ ⊆ F and A′ ⊆ A

be active firms and applicants of the game, that is, players who have not exited the game by
finalizing contracts. That is, F\F ′ and A\A′ have already been matched up, and F ′ and A′ are
the only active players, and there is no rejected offer or pending offer among F ′ and A′. With
rejected offers and states with pending offers, a state is described as a list (F ′,A′;R;P), where
R = {(f, a) ∈ F ′ ×A′: a has rejected an offer from f } and P = {〈f,a, s〉 ∈ F ′ ×A′ ×R+: a has
not accepted an offer from f with salary s}. Obviously, for any 〈f,a, s〉 ∈ P , (f, a) /∈ R holds.
Let F ′

P = {f ∈ F ′: ∃〈f,a, s〉 ∈ P } and A′
P = {a ∈ A′: ∃〈f,a, s〉 ∈ P }. We need a little more

notation. Let fi(F
′) be the ith best firm among F ′ (i = 1, . . . , |F ′|), and let aj (A

′) be the j th
best firm among A′ (j = 1, . . . , |A′|). A matrix Y |F ′,A′ is a restriction of production matrix Y .

16 This rule was proposed by Roth and Xing (1994) as an equilibrium refinement. If fi makes an offer and aj rejects it,
fi cannot go back to aj making an offer with a higher salary. That is, there is no room for salary negotiation.
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Our first result is that the minimum competitive salary vector s∗ can be an outcome of a
stationary Markov perfect equilibrium. We will support the following equilibrium path:

in stage � = 1,2, . . . ,min{n,m}, f� makes an offer to a� with salary s∗
� , and a� immediately

accepts it. At the end of stage min{n,m}, the game ends.

Thus, after min{n,m} stages, all matchings are made and the assortative matching is realized
with the minimum competitive salary profile. Now, we will show that this path can be supported
as a subgame perfect equilibrium. We have the following proposition.

Proposition 3. In a multistage game, there is a stationary Markov perfect equilibrium path such
that in stage � = 1, . . . ,min{n,m}, f� makes an offer with s∗

� to a� and a� accepts the offer
immediately. Thus, the resulting payoff vector for firms is u∗ = (u1, . . . , un), where u∗

i = Yii − s∗
i

for all i � min{n,m} and u∗
i = 0 if n > m.

To show this, we need to specify a stationary Markov perfect equilibrium strategy profile
which generates the path described above. Since it is lengthy and cumbersome, the formal de-
scription of strategy profile is provided in an appendix. The basic idea is as follows: in each stage
the best remaining applicant obtains an offer from the best firm that can make an offer to her
(the firm has not been rejected by her, and has no pending offer). If the offered salary is more
than or equal to the minimum competitive salary given the constraints of existing rejected and
pending offers, then she accepts the offer. Otherwise, she waits for a better offer. In the latter
case, some other firm has an incentive to counter the original offer, and the original offer will be
rejected. As a result, the best firm eventually receives a lower payoff than it would by making a
minimum competitive salary offer to the best applicant, since only the second-best applicant is
available after the firm is rejected by the best applicant. Thus, under such a strategy profile, the
best (available) firm should offer exactly the minimum competitive salary to the best available
applicant, and they will be matched up.

Although Proposition 3 says that s∗ is supportable, there are many more stationary Markov
perfect equilibria. To illustrate, we provide two examples.

Example 3. Consider the case where m = n = 2.

Y =
(

Y11 Y12
Y21 Y22

)

Consider the following strategy profile. In stage 1, f2 makes a zero salary offer to a2, and in
stage 2, f1 makes a zero salary offer to a1. Offers are accepted immediately. This is a stationary
Markov perfect equilibrium. As long as an offer is made in stage 1 by f2, then the game contin-
ues, and f2 can make an offer to a1. However, f2 cannot get a1 since f1 would match the offer
and needs to pay an additional cost of making an irrelevant offer.

Salary vector s = (0,0) is not a competitive equilibrium price vector, and thus it is not in the
core. However, in the subgame (F ′,A′) = ({f1}, {a1}), s1 = 0 is a competitive equilibrium price,
and so is in the core. Although transfers are not allowed, the structure of the above example is
similar to Example 3.1 in Bloch and Diamantoudi (2006), which shows that there is a noncore
allocation that is supported by a stationary Markov perfect equilibrium in a sequential move
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game of a marriage problem.17 Note that such an equilibrium is very robust. For any game with
n � m, there is a zero-salary equilibrium. If n > m, then s′ = (Ym+1,1, Ym+1,2, . . . , Ym+1,m) is
an outcome of a stationary Markov perfect equilibrium (fm makes a s′

m = Ym+1,m offer to am in
stage 1, since fm+1 can counter; otherwise: the rest is the same).

Unfortunately, this stationary restriction on strategy space is not sufficiently powerful to ex-
clude unintuitive equilibria. A firm can make a useless offer to an applicant only to be rejected
by her, which changes the current state. Since firms’ strategies depend on the states they are in,
the equilibrium outcome can be affected by such a seemingly irrelevant state switch initiated by
the firm. Thus, with multiple equilibria in subgames, we can still cook up variety of equilibrium
outcomes.

Example 4. Consider the case where m = n = 3.

Y =
(

Y11 Y12 Y13
Y21 Y22 Y23
Y31 Y32 Y33

)

We can cook up a stationary Markov perfect equilibrium strategy profile. First f1 and f2
make offers to a1 with the same salaries δ ∈ (s∗

1 , Y11 − Y12), and a1 rejects f2 but does not
immediately accept f1. This delay in acceptance makes a difference.18 Let us assume that only
in state (F,A; (f2, a1); 〈f1, a1, δ〉), f3 moves first to make a zero salary offer to a3, and a1 and a3
accept the offers. At the same time, in states (F,A; ∅; 〈f1, a1, δ〉) and ({f2, f3}, {a2, a3}; ∅;∅),
f2 makes an s∗

2 offer to a2, and a2 (and a1 if a1 is still there) accepts the offer. The leftover firm
offers a zero salary to the leftover applicant. This is a stationary Markov perfect equilibrium, and
the equilibrium path is as follows: in stage 1 f1 and f2 make a δ offer to a1 with salary δ, and f2
is rejected (f1’s offer is pending). In stage 2, f3 makes a zero salary offer to a3, and a1 and a3
accept the offers. In stage 3, f2 makes a zero salary offer to a2, and a2 accepts it. Although f2
needs to pay for the offer to be rejected, as long as the cost is less than s∗

2 , f2 is better off making
an offer to a1, since otherwise, at the next stage f2 will need to make a s∗

2 offer to a2, and the
payoff is just Y22 − s∗

2 . By making an irrelevant offer, in the next stage, f3 moves first, and f2
can get a2 with a zero salary. If f1 does not make an offer in stage 1, f2 gets a1, and f1 can get
at most Y12 (with zero salary for a2). Thus, f1 has an incentive to make an offer δ � Y11 − Y12
to a2. That is, depending on f2’s seemingly irrelevant choice in stage 1, the real outcome can be
affected by having a rejection on the equilibrium path.

Although the equilibrium in Example 4 is robust (it is not an equilibrium with weakly domi-
nated strategies, and survives with small costs of making offers),19 the nature of the equilibrium
is still somewhat pathological. Firm f1 makes a very high salary offer to a1 due to f2’s threat.

17 The sequential move game employed by Bloch and Diamantoudi (2006) is the standard one in coalitional bargaining
literature (Chatterjee et al., 1993; Bloch, 1996; Okada, 1996; and Ray and Vohra, 1999), which is very different from
ours.
18 If f1’s offer were accepted immediately, then the state is described only by A′ = {a2, a3} and F ′ = {f2, f3}. Thus,
f2’s action cannot affect the outcome with Markov strategies. It might look irrelevant if a1 holds f1’s offer for one
period (and obviously holding an offer is not a weakly dominated strategy), but it makes a big difference in this (artificial)
example.
19 In our game, avoiding complexity of strategies does not do much either: i.e., lexicographic minimization of complex-
ity costs à la Gale and Sabourian (2006) does not refine our stationary Markov equilibrium. We thank Jihong Lee for
clarifying this point to us.
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However, f2’s motivation to make an offer to a1 is only to be rejected and effect a change in the
following subgames. With a cost attached to making offers, a rejection on the equilibrium path
can occur only under such a situation. Thus, we next consider a stationary Markov equilibrium
without rejections on the equilibrium path.

Proposition 4. Suppose n � 2 and m � 2. In a multistage game, in any pure strategy station-
ary Markov perfect equilibrium without any rejections on the equilibrium path, the equilibrium
salary vector satisfies s � s∗, and the firms’ payoff vector satisfies u � u∗, where u∗

i = Yii − s∗
i

for all fi ∈ F .

This proposition says that if there is no rejection on the equilibrium path, then the equilibrium
salary vector is not more than the minimum competitive salary vector. We conclude this section
by providing an example in which the assortative matching is not necessarily the only equilibrium
outcome. That is, there can be an inefficient equilibrium.

Example 5. Consider the case where m = n = 4 with the following multiplicative output matrix.

Y =
⎛
⎜⎝

16 12 8 4
12 9 6 3
8 6 4 2
4 3 2 1

⎞
⎟⎠

Consider the following path: First, firm f1 makes an offer to a2 with s2 = 2. Then, firm f4 makes
a zero salary offer to a4. Then, firm f3 makes a zero salary offer to a3. Finally, firm f2 makes
a zero salary offer to a1. All offers are accepted by the end of the game. With these actions,
the firms’ payoff vector is u = (10,12,4,1). To make f1 not deviate in making an offer to a1,
we can prepare the following perfect equilibrium in the subgame: If f1 offers s1 < 6, then f2
makes a counteroffer to a1 with s′

1 = max{s1 + ε,5}, and otherwise, f2 makes an offer to a2
with s2 = 3. Then, f3 and f4 follow sequentially by making offers to a3 and a4 with s3 = 1 and
s4 = 0, respectively. This subsequent path corresponds to the highest salary equilibrium, and f1
needs to pay s1 = 6 in order to get a1 (the resulting payoff vector is u∗ = (10,6,3,1)). Thus,
f1 is indifferent between deviating and not deviating.20 Firm f2 has no incentive to deviate,
since the equilibrium outcome is the best-case scenario for it. Firm f3 has no incentive to make a
counteroffer to a2, since it needs to pay s′

2 > s2 = 2 (the payoff by deviating is less than 4). The
same remark applies to f4. Thus, the above path is supportable as an equilibrium path.

5. Conclusion

Bulow and Levin (2006) asserted that salaries are more suppressed under the centrally planned
matching mechanism than under a decentralized market. However, they used the minimum com-
petitive salary vector (a Vickrey auction salary vector) as the outcome of the decentralized
market. In the real labor market, a decentralized market will involve a collection of bilateral
offers and applicants’ accept/reject decisions. In this paper, we have compared the equilibrium
salary vectors in such situations by specifying games in tractable manners. We have shown three
results. First, under a simultaneous move game, in any mixed-strategy equilibria, the resulting

20 We can modify the example by reducing Y11 slightly from 16 without damaging strict supermodularity and strict
monotonicity, if we want to give f1 a strict incentive to follow the equilibrium path.
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(expected) salary vector is dominated by the minimum competitive salary vector (Proposition 1).
Second, under a sequential move game with open offers, there is a stationary Markov perfect
equilibrium that attains the minimum competitive salaries (Proposition 3). If rejections are not
allowed on the equilibrium path, any stationary Markov perfect equilibrium attains at most the
minimum competitive salaries (Proposition 4). We also demonstrated that there are many other
stationary Markov perfect equilibria (Examples 3 and 4).

Our games are admittedly too simplistic in comparison with real-world market institutions.
In a simultaneous move game, one of the most problematic issues is that we do not allow after-
market job matchings among firms and applicants who could not be matched in the market.
However, it is very hard to formalize the concept of an “after market” since it is not clear how it
differs from a decentralized bilateral labor market.

In multistage game, the main problem is our “open offer” assumption: an offer is good for
a long period until it has been accepted or rejected by the applicant. Real-world offers usually
have deadlines, sometimes very short (exploding offers). To evaluate the performance of NRMP
in comparison with the decentralized market, ideally we should use equilibrium salary vectors
of the games that mimic the real-world market institutions as reference salary vectors of decen-
tralized matching markets. However, exploding offers are very difficult to analyze especially if
they involve endogenized salaries.21 We hope to extend our analysis by adopting more realistic
assumptions in our future research.

6. Proofs

We collect all the proofs of the lemma and propositions in the main text.

Lemma 1. If the output matrix Y is strictly supermodular and strictly increasing then the min-
imum competitive salary vector is s∗ = (s∗

1 , . . . , s∗
m) where (i) s∗

j = ∑n−1
j ′=j (Yj ′+1j ′ − Yj ′+1j ′+1)

for any j � n − 1 and s∗
j = 0 for j � n when n � m, and (ii) s∗

j = Ymm + ∑m−1
j ′=j (Yj ′+1j ′ −

Yj ′+1j ′+1) for any j � m − 1 and s∗
m = Ym+1m when n > m.

Proof. Shapley and Shubik (1971) showed that if an outcome of an assignment problem is
stable then the assignment matrix associated with it is an optimal assignment. Under strict super-
modularity and strict increasingness, the unique optimal assignment of the output matrix Y is an
assortative matrix X∗. Thus, what is left to show is that the minimum salary vector that supports
this assignment is s∗ where (i) s∗

j = ∑n−1
j

′=j
(Y

j
′+1j

′ − Y
j

′+1j
′+1) for any j � n − 1 and s∗

j = 0

for any j � n when m � n, and (ii) s∗
j = Ym+1m +∑m−1

j ′=j (Yj ′+1j ′ −Yj ′+1j ′+1) for any j � m−1
and s∗

m = Ym+1m when n > m.
Suppose not. Then there is a competitive salary vector s′ with s′

j < s∗
j for some j . First assume

n � m. Obviously, such j must belong to {1, . . . , n − 1}, suppose that s′
n−1 < s∗

n−1, and thus
s′
n−1 < Ynn−1 − Ynn. Consider a deviation by a pair (fn, an−1). Since s′

n � s∗
n = 0, π ′

n � Ynn.
Now, s′

n−1 + π ′
n < Ynn−1 − Ynn + Ynn = Ynn−1. This violates stability, and contradicts s′ being

21 One simple way to introduce exploding offers is to adopt a framework of sequential bargaining or coalition bargaining
game (see Chatterjee et al., 1993; Bloch, 1996; Okada, 1996; and Ray and Vohra, 1999). In each stage, one firm is selected
as a proposer (randomly or in some order), and it can make an offer to an applicant. However, in such a setting (only
firms can make offers) with exploding offers, the resulting salaries are zeros or very close to zeros. This is why we adopt
the framework provided by Roth and Xing (1994).
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a competitive salary. Thus s′
n−1 � s∗

n−1. Suppose that s′
n−2 < s∗

n−2, and thus s′
n−2 < Yn−1n−2 −

(Yn−1n−1 − (Ynn−1 − Ynn)). From the previous step, we know s′
n−1 � s∗

n−1, and thus π ′
n−1 �

Yn−1n−1 − s∗
n−1 = Yn−1n−1 − (Ynn−1 − Ynn). Thus, we have

s′
n−2 + π ′

n−1 < Yn−1n−2 − (
Yn−1n−1 − (Ynn−1 − Ynn)

) + Yn−1n−1 − (Ynn−1 − Ynn)

= Yn−1n−2.

This violates stability, and contradicts s′ being a competitive salary. Thus s′
n−2 � s∗

n−2. Repeated
applications of the same logic yield that any competitive salary vector s′ satisfies s′ � s∗.

Second, assume n > m. Then obviously such j with s′
j < s∗

j must satisfy j � m. Suppose
s′
m < s∗

m = Ym+1m. Then, a deviation by a pair (fm+1, am) can block the allocation, since in
the allocation πm+1 = 0 and s′

m < Ym+1m. This is a contradiction. Thus s′
m � s∗

m. Since in the
allocation firm fm gets πm = Ymm − s′

m � Ymm − s∗
m = 0, we conclude s′

m = s∗
m. Now suppose

s′
m−1 < s∗

m−1. In this case, a deviation by a pair (fm,am−1) can improve upon the allocation since
πm = 0 and s′

m−1 < Ymm + (Ymm−1 − Ymm) = Ymm−1. This is a contradiction, and we conclude
s′
m−1 � s∗

m−1. Now suppose that s′
m−2 < s∗

m−2, thus s′
m−2 < Ym−1m−2 − Ym−1m−1 + Ymm−1.

From the previous step, we know s′
m−1 � s∗

m−1 = Ymm−1, and thus π ′
m−1 � Ym−1m−1 − s∗

m−1 =
Ym−1m−1 − Ymm−1. Thus, we have

s′
m−2 + π ′

m−1 < Ym−1m−2 − Ym−1m−1 + Ymm−1 + Ym−1m−1 − Ymm−1

= Ym−1m−2.

This violates stability, and contradicts s′ being a competitive salary. Thus s′
m−2 � s∗

m−2. Repeated
applications of the same logic show that any competitive salary vector s′ satisfies s′ � s∗. �
Proposition 1. Suppose that Y is strictly supermodular and strictly increasing, and that n � 2
and m � 2. In any mixed-strategy equilibrium G in a one-shot game, we have: for all i = 1, . . . , n

and all j = 1, . . . ,m, (i) s̄j = s∗
j for all j = 1, . . . ,m, (ii) ui(G) = Yii − s∗

i for all i � min{n,m}
and ui(G) = 0 if n > m, and (iii) vj (G) < s∗

j for all j � min{n − 1,m} and vj (G) = s∗
j = 0 for

all j > min{n − 1,m}.

We will prove Proposition 1 by a sequence of claims.

Claim 1 (No spikes). For all aj , no firm fi plays (aj , s) for any s ∈ (0, s̄j ] with a positive
probability when s̄j > 0.

Proof. Suppose that a firm fi makes an offer of salary s > 0 to aj with a positive probability.
Then for all other firms, the winning probability function wi′j jumps down at s. Thus, no other
firm plays (aj , s

′) with positive density for s′ = s − ε for ε > 0 small enough. This gives fi an
incentive to shift the spike at s slightly lower. Thus, in equilibrium, fi would not play (aj , s)

with a positive probability for any s ∈ (0, s̄j ]. �
Claim 2 (No gap for at least a pair of firms). For all aj , and all intervals (s′

j , s
′′
j ) ⊂ (0, s̄j ), there

are at least two firms with Gij (s
′
j ) < Gij (s

′′
j ).

Proof. First note that there is a firm fi such that Gij (s̄j − ε) < Gij (s̄j ) holds for all ε > 0. Firm
fi obtains its expected payoff of Yij − s̄j by this offer since wij (s̄j ) = 1. Thus, there is another
firm that plays (aj , s) for some s ∈ (s′′, s̄j ]. Note that s′′ < s̄j (by the definition of s̄j ). Without
j j
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loss of generality, we can let Gi′j (s′′
j + ε)−Gi′j (s′′

j ) > 0 for all ε > 0 for some fi′ . Focus on this
firm. Suppose that there is no firm that offers any of sj ∈ (s′

j , s
′′
j ) to aj . Then, wi′j (s′

j ) = wi′j (s′′
j ),

and firm i′ would be better off making an s′
j offer to aj , which is a contradiction. Thus, there is at

least one such firm. Moreover, if firm fi′ is the only such a firm, then again wi′j (s′
j ) = wi′j (s′′

j )

follows. This is again a contradiction, and we have shown that at least two firms make salary
offers within the interval (s′

j , s
′′
j ) to aj with positive probabilities. �

Note that

wij (sj ) = Πi′ �=i (1 − (Gi′j (s̄j ) − Gi′j (sj )))

= Πn
i′=1(1 − (Gi′j (s̄j ) − Gi′j (sj )))

(1 − (Gij (s̄j ) − Gij (sj )))
. (1)

This implies

wij (sj ) � wi′j (sj ) ⇔ Gij (s̄j ) − Gij (sj ) � Gi′j (s̄j ) − Gi′j (sj ).

Thus, we have the following:

Claim 3. For all i, i′ = 1, . . . , n and all j = 1, . . . ,m, 0 < s̄ij < s̄i′j = s̄j implies i′ < i.

Proof. By definition, we have wij (s̄ij )(Yij − s̄ij ) = ui(G) � Yij − s̄j . Thus, we have

wij (s̄ij ) � Yij − s̄j

Yij − s̄ij
.

Similarly, since s̄i′j = s̄j , we have wi′j (s̄ij )(Yi′j − s̄ij ) � Yi′j − s̄j = ui′(G). This implies

wi′j (s̄ij ) �
Yi′j − s̄j

Yi′j − s̄ij
.

Since Gi′j (s̄ij ) < Gi′j (s̄j ) (from s̄i′j = s̄j ) and Gij (s̄ij ) = Gij (s̄j ), (1) implies wij (s̄ij ) <

wi′j (s̄ij ). Thus, we have

Yij − s̄j

Yij − s̄ij
<

Yi′j − s̄j

Yi′j − s̄ij
,

or Yij < Yi′j . This completes the proof. �
Claim 4. For any j = 1, . . . , n−1, we have (i) s̄j = s̄jj = s̄j+1j and (ii) s̄kj < s̄j for k �= j, j +1.

Proof. By induction. Let j = 1. Then, by Claim 1, at least two firms make the highest salary
offers to a1. By Claim 3, f1 and f2 must satisfy s̄11 = s̄21 = s̄1.

Suppose to the contrary that f3 also satisfies the same condition: s̄31 = s̄1. These imply

Y11 − s̄1 � Y1j − s̄j ,

Y21 − s̄1 � Y2j − s̄j ,

Y31 − s̄1 � Y3j − s̄j

for all j = 2, . . . ,m. However, by strict supermodularity, Yı̂ĵ − Y
ı̂j̃

> Yı̃ĵ − Y
ı̃j̃

for all ı̂ < ı̃ and

all ĵ < j̃ . This implies that the first two inequalities need to be strict, i.e.:
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Y11 − s̄1 > Y1j − s̄j ,

Y21 − s̄1 > Y2j − s̄j ,

Y31 − s̄1 � Y3j − s̄j

for all j = 2, . . . ,m. By the above inequalities, firms f1 and f2 must make offers only to a1.
(If f2 makes an offer to aj �= a1, then s̄2j < s̄j must be satisfied in order to achieve indifference,
since w21(s̄1) = 1. By Claim 3, this implies s̄1j = s̄1, which is a contradiction.) However, if it
were the case, then there is no mixed-strategy equilibrium. (By Claim 1 and our tie-breaking
rule, there is no spike in the distribution of G21 even at s2 = 0. This implies that w11(s21) = 0.
But then, G11(s21) = 0. But then, w21(s21) = 0 as well, and we have u2(G) = 0, which cannot
happen since there are other applicants.) This is a contradiction. Thus, we conclude that only f1
and f2 make offers to a1 with the highest salary s̄1. Hence, we have

Y11 − s̄1 > Y1j − s̄j ,

Y21 − s̄1 � Y2j − s̄j

for all j = 2, . . . ,m. By supermodularity, an equality holds in the second inequality only when
j = 2.

Now, we move on to a2. We focus on the behavior of f2. In order to see it, we need to consider
f1’s strategy closely. Suppose that G11(0) = 0. Then, by Claim 1, G11 has no spikes. Given this,
for any s21 ∈ [0, s̄1], w11(s21) = 0 and G11(s21) = 0. But then, w21(s21) = 0 as well, and we get
u2(G) = 0. This cannot happen, so we have w11(0) > 0 and G21(s̄1) < 1 (otherwise, f1 cannot
obtain a positive payoff by making a zero salary offer). This shows that firm f2 makes some
salary offers to a2 with a positive probability, and the maximum offer must be s̄2 by Claim 3
again. By the same argument above, firms f2 and f3 make offers to a2 with s̄2. The fact that f2’s
makes an offer to a1 gives f3 a positive chance of winning by making a zero salary offer to a2.

By repeating the same argument, we complete the proof of this claim. �
Now, we can complete the proof of Proposition 1.

Proof of Proposition 1. We start with the case n � m. By Claim 4, we know an gets an offer
only from fn with a positive probability. This means that s̄j = 0 = s∗

j for all j � n. Since firm
fj+1 is indifferent between making an offer to aj with salary s̄j and making an offer to aj+1
with a salary s̄j+1, in either case the winning probability is 1 (wj+1j (s̄j ) = wj+1j+1(s̄j+1) = 1).
Thus, Yj+1j − s̄j = Yj+1j+1 − s̄j for all j = 1, . . . , n − 1. By Claim 1, we conclude s̄ = s∗.
Thus, applicants’ payoffs are lower since firms play mixed strategies, and the best-case scenario
for each applicant is to get the same salary as the one under the minimum competitive price.

Now consider the case n > m. By Claim 4, we know am gets offers only from firms i =
m, . . . , n. We claim that s̄m = s∗

m holds and fm+1 offers to am a salary Ym+1m with probability
one. Suppose that 0 < s̄m < s∗

m = Ym+1m. Since fm+1 obtains a positive expected payoff, the
equilibrium must be in mixed strategies. Thus we have

Ym+1m − s̄m = wm+1m

(
s′
m

)(
Ym+1m − s′

m

)
,

Ymm − s̄m = wmm

(
s′
m

)(
Ymm − s′

m

)
.

Since Ymm > Ym+1m, we have

wmm(s′
m) = Ymm − s̄m

′ >
Ym+1m − s̄m

′ = wm+1m

(
s′
m

)
.

Ymm − sm Ym+1m − sm
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For the outcome to be in equilibrium, we need wmm(smm) > 0. Suppose that smm = 0. Since
Gmm(smm) = 0 by Claim 1, (1) implies Gm+1m(0) > 0. However, then firm fm+1 gets a zero
payoff by the tie-breaking rule. Thus, we have smm > 0. Since firm fm+1 gets a positive expected
payoff, there is at least another firm fi with i ∈ {m+2, . . . , n}, which is playing a mixed strategy
over an interval including [0, smm]. By repeating the same argument, we have sm+1m > 0, and
Gim(sm+1m) > 0. This means that there is a firm fi′ with i′ ∈ {i + 1, . . . , n}, which is playing
a mixed strategy over an interval including [0, sm+1m]. However, there is only a finite number
of firms; there is a firm fi′′ with i′′ ∈ {m + 1, . . . , n} and si′′m = 0, so we have a contradiction.
Hence, s̄m < s∗

m cannot happen.
Now, we assume s̄m = s∗

m = Ym+1m. In this case, firm fm+1 can make only zero payoff by
making such an offer; the winning probability of fm+1 by offering to am anything less than
s̄m = s∗

m must be zero (otherwise, fm+1 would not make s̄m = s∗
m offer). Thus, we conclude that

fm+1 makes an offer to am with salary s∗
m with probability one. Then, firm fm makes an offer to

am with salary s∗
m with a positive probability. The rest is the same as the former case (n � m).

We have completed the proof. �
Proposition 2. If n � 2, m � 2, and n < 2m then there is no pure strategy equilibrium.22

Proof. Suppose that m � n. In this case, each applicant aj should get at most one offer, since
a rejected firm gets zero payoff and Yij > 0 for all fi and aj . However, this implies that all
applicants who receive offers must get zero salaries since there is no competition. Since matrix Y

is strictly increasing, any firm which does not get a1 has an incentive to make a positive salary
offer to a1. Thus, this cannot be an equilibrium.

Next suppose that m < n. In this case, each applicant aj gets at least one offer. If every
applicant is getting exactly one offer with zero salary, then we have a contradiction as we have
seen before. Actually, as long as there is an applicant who gets multiple offers, no applicant
can get zero salary, since a rejected firm has an incentive to make a positive salary offer to a zero
salary applicant. As a result, all applicants must get multiple offers in a pure strategy equilibrium.
However, it cannot happen when n < 2m. �
Proposition 3. In a multistage game, there is a stationary Markov perfect equilibrium path such
that in stage � = 1, . . . ,min{n,m}, f� makes an offer with s∗

� to a� and a� accepts the offer
immediately.

Proof. We need only to show non-profitability of unilateral deviations from the equilibrium path
described above. In stage �, let F ′ ⊆ F and A′ ⊆ A be active firms and applicants of the game,
that is, players who have not exited the game by finalizing contracts. Note that some of F ′ might
have made offers to applicants before stage �, and some of them might have been rejected, and
others might be outstanding in stage �. However, since we are considering the supportability of
a path against unilateral deviation, we do not need to exhaust all possible states. State (F ′,A′)
describes the situation where F\F ′ and A\A′ have already been matched up, and F ′ and A′ are
the only active players, and there is no rejected offer or pending offer among F ′ and A′. We also
consider states with rejected offers and states with pending offers. An example of the former is

22 If m = 1 and/or n = 1, then there is a pure strategy equilibrium. If m = 1, f1 gets a1 with salary Y21 if n � 2. If
n = 1, f1 gets a1 with a zero salary.
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(F ′,A′, (f, a)): the contents of the inner () is a rejected offer which shows that a rejected f ’s
offer and f will not be able to make another offer to a (after being rejected, the amount of the
salary does not matter, so is omitted). If there are multiple rejected offers, then a list of rejected
offers follows after (F ′,A′). An example of the latter one is (F ′,A′; 〈f,a, s〉): the contents of 〈〉
is a pending offer which shows that f made an offer to a with a salary s but a has not accepted
or rejected it. As before, if there are multiple pending offers then a list of pending offers follows
(F ′,A′). In order to describe all possible states, we need to list both the set of rejected offers and
the one of pending offers after the set of active players. However, since we are interested in the
nonprofitability of unilateral deviations, we do not need to introduce full notation.

Let s∗(F ′,A′) be the minimum competitive equilibrium salary vector for an assignment prob-
lem (F ′,A′), where the production matrix used is Y |F ′,A′ which is a restriction of the production
matrix Y on (F ′,A′): this matrix is also strictly supermodular and strictly increasing; thus we
can apply Lemma 1 for s∗(F ′,A′).

Now, we describe players’ strategies in relevant states.

Firms’ strategies in relevant states

We let only one firm make an offer in each case.

1. If there is no rejected offer nor pending offer at a state, then f1(F
′) makes an offer to a1(A

′)
with salary s∗

1 (F ′,A′).
2. If a state involves a rejected offer (f, a) = (f1(F

′), a1(A
′)),23 then f2(F

′) makes an offer to
a1(A

′) with salary24

s∗
1

(
F ′,A′; (f1(F

′), a1(A
′)
)) = Y3,1|F ′,A′ − Y3,3|F ′,A′ + s∗

3 (F ′,A′).

3. If a state involves a pending offer 〈f,a, s〉, then there are five cases.25

(a) If 〈f,a, s〉 = 〈f1(F
′), a1(A

′), s1〉 with s1 < s∗
1 (F ′,A′) then f2(F

′) makes an offer to
a1(A

′) with salary max{s1 + ε, s∗
3 (F ′,A′) + Y3,1|F ′,A′ − Y33|F ′,A′ },26 where ε > 0 is a

small number.
(b) If 〈f,a, s〉 = 〈f2(F

′), a1(A
′), s1〉 with s1 � s∗

1 (F ′,A′) then f1(F
′) makes an offer to

a1(A
′) with salary max{s1, s

∗
3 (F ′,A′) + Y3,1|F ′,A′ − Y33|F ′,A′ }.

(c) If 〈f,a, s〉 = 〈fk(F
′), ak(A

′), sk〉 with sk < s∗
k (F ′,A′) then f1(F

′) makes an offer to
a1(A

′) with salary s∗
1 (F ′,A′)− s∗

k (F ′,A′)+ max{sk + ε, s∗
k+2(F

′,A′)+Yk+2,k|F ′,A′ −
Yk+2,k+2|F ′,A′ }, where ε > 0 is a small number. (Firm f1(F

′) arrives at this by
expecting that fk+1(F

′) will make an offer to ak(A
′) with salary s′

k = max{sk +
ε, s∗

k+2(F
′,A′) + Yk+2,k|F ′,A′ − Yk+2,k+2|F ′,A′ } at the kth stage from now. At the

23 Given the applicants’ strategies, rejection can occur only by a1(A′) with unilateral deviations. Thus, we can focus
on rejections by a1(A′) only. If there are multiple rejections by a1(A′), (f1(F ′), a1(A′)), . . . , (fi (F

′), a1(A′)), then
fi+1(F ′) makes an offer to a1(A′) with salary

s∗
1
(
F ′,A′; (f1(F ′), a1(A′)

)
, . . . ,

(
fi(F

′), a1(A′)
)) = s∗

i+2(F ′,A′) + (Yi+2,1|F ′,A′ − Yi+2,i+2|F ′,A′ ).

24 After f1(F ′) being rejected by a1(A′), f2(F ′)’s only direct competitor is f3(F ′). Thus, f2(F ′) can get a1(A′) if
f3(F ′) would rather get a3(A′). Note that a2(A′) would be taken by f1(F ′).
25 Even if there are multiple pending offers, we let the best available applicant receive an offer from the best available
firm without a pending offer in a similar manner.
26 Firm f1(F ′) can beat f2(F ′) by offering s1. However, f1(F ′) needs to worry about f3(F ′) challenging to get a1(A′).
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(k + 1)th stage from now, rejected fk(F
′) will make an offer to ak+1(A

′) with salary
s∗
k+1(F

′).)
(d) If 〈f,a, s〉 = 〈fk+1(F

′), ak(A
′), sk〉 with sk � s∗

k (F ′,A′) then f1(F
′) makes an offer

to a1(A
′) with salary s∗

1 (F ′,A′) − s∗
k (F ′,A′) + max{sk, s∗

k+2(F
′,A′) + Yk+2,k|F ′,A′ −

Yk+2,k+2|F ′,A′ }. (Firm f1(F
′) arrives at this by expecting that fk(F

′) will make an offer
to ak(A

′) with salary max{sk, s∗
k+2(F

′,A′) + Yk+2,k|F ′,A′ − Yk+2,k+2|F ′,A′ } at the kth
stage from now.)

(e) If a pending offer takes any other form, f1(A
′) makes an offer to a1(A

′) with salary
s∗

1 (F ′,A′).27

Applicants’ strategies in relevant states

1. Suppose that there is no rejected offer at the state.
(a) If applicant a1(A

′) receives offers with a salary more than or equal to s∗
1 (F ′,A′), then

she chooses the highest salary offer and immediately accepts it (for multiple highest
salary offers, choose the smallest index firm).

(b) If applicant a1(A
′) receives offers with the highest salary s′

1 < s∗
1 (F ′,A′) or with the

highest salary s′
1 = s∗

1 (F ′,A′) from f �= f1(F
′), then she keeps the best offer and waits

for a better offer until there is no other available firm f ∈ F ′ (which has not been
rejected by a1(A

′) or has a pending offer to another applicant).
(c) If applicant ai(A

′) (i �= 1) receives offers, then she keeps the best offer and waits for a
better offer until ai(A

′) becomes the top applicant a1(A
′′) among A′′ ⊂ A′ after some

states pass (then one of the cases 1(a) or 1(b) applies), or until the game ends due to
there being no proposer at the stage.

2. Suppose that there is a rejected offer.28 The only relevant case is that a1(A
′) deviated at the

last stage by rejecting the offer from f1(F
′). In this case, if f2(F

′) offers to a1(A
′) salary

s∗
1

(
F ′,A′; (f1(F

′), a1(A
′)
)) = s∗

3 (F ′,A′) + (Y3,1|F ′,A′ − Y3,3|F ′,A′),

then a1(A
′) accepts the offer immediately.

3. Suppose that there is a pending offer 〈f,a, s〉.
(a) If 〈f,a, s〉 = 〈f1(F

′), a1(A
′), s1〉 with s1 < s∗

1 (F ′,A′) and if f2(F
′) makes an offer to

a1(A
′) with salary more than or equal to max{s1 +ε, s∗

3 (F ′,A′)+Y3,1|F ′,A′ −Y33|F ′,A′ },
where ε > 0 is a small number, then a1(A

′) accepts it immediately.
(b) If 〈f,a, s〉 = 〈f2(F

′), a1(A
′), s1〉 with s1 � s∗

1 (F ′,A′) and if f1(F
′) makes an offer to

a1(A
′) with salary more than or equal to max{s1, s

∗
3 (F ′,A′) + Y3,1|F ′,A′ − Y33|F ′,A′ },

then a1(A
′) accepts it immediately.

(c) If 〈f,a, s〉 = 〈fk(F
′), ak(A

′), sk〉 with sk < s∗
k (F ′,A′) and if f1(F

′) makes an of-
fer to a1(A

′) with salary more than or equal to s∗
1 (F ′,A′) − s∗

k (F ′,A′) + max{sk +

27 As a result, unless a pending offer 〈f,a, s〉 = 〈fi , aj , sj 〉 satisfies i = j or i = j + 1, it is irrelevant in determining
salary.
28 Similarly, if in case a1(A′) rejected multiple offers (f1(F ′), a1(A′)), (f2(F ′), a1(A′)), . . . , (fi (F

′), a1(A′)), and if
fi+1(F ′) offers a1(A′) with salary

s∗
1
(
F ′,A′; (f1(F ′), a1(A′)

)
, . . . ,

(
fi(F

′), a1(A′)
)) = s∗

i+2(F ′,A′) + (Yi+2,1|F ′,A′ − Yi+2,i+2|F ′,A′ ),

then a1(A′) accepts the offer.
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ε, s∗
k+2(F

′,A′) + Yk+2,k|F ′,A′ − Yk+2,k+2|F ′,A′ }, where ε > 0 is a small number, then
a1(A

′) accepts it immediately.
(d) If 〈f,a, s〉 = 〈fk+1(F

′), ak(A
′), sk〉 with sk � s∗

k (F ′,A′) and if f1(F
′) makes an of-

fer to a1(A
′) with salary more than or equal to s∗

1 (F ′,A′) − s∗
k (F ′,A′) + max{sk,

s∗
k+2(F

′,A′) + Yk+2,k|F ′,A′ − Yk+2,k+2|F ′,A′ }, then a1(A
′) accepts it immediately.

(e) If a pending offer takes any other form, and if f1(A
′) makes an offer to a1(A

′) with
salary more than or equal to s∗

1 (F ′,A′), then a1(A
′) accepts it immediately.

The above strategy profile generates the equilibrium path: in stage �, f1(F
′) and a1(A

′) are
matched, and in stage � + 1, the game is played by F ′\{f1(F

′)} and A′\{a1(A
′)}, and the above

strategies apply to this subgame, too. It is easy to see that the above strategies generate the simple
path of firm f� making an offer to a� with salary s∗

� (F ′,A′) for all � = 1, . . . , n, and of applicants
accepting offers immediately.

Given the above on-equilibrium strategies, the following cases may occur by having a unilat-
eral deviation by a firm.

1. Firm f1(F
′) deviates at a stage. There are three cases.

(a) f1(F
′) does not make an offer. In this case, the game ends, and f1(F

′) gets zero payoff.
Thus, there is no such incentive.

(b) f1(F
′) makes an offer to aj (A

′) with j �= 1. In this case, if the salary is more than or
equal to s∗

j (F ′,A′) then aj (A
′) accepts the offer eventually (after all applicants who

are better than aj (A
′) have accepted offers). Thus, f1(F

′) and aj (A
′) are matched and

they exit the game. However, f1(F
′)’s payoff is lower than on-equilibrium outcome:

f1(F
′) being matched with a1(A

′) with salary s∗
1 (F ′,A′). It is because s∗(F ′,A′) is a

competitive salary vector. If the salary is less than s∗
j (F ′,A′) then the offer is eventu-

ally rejected, and at this stage the best available applicant is aj+1(A
′), who demands

s∗
j+1(F

′,A′). Thus, again f1(F
′)’s payoff is lowered because s∗(F ′,A′) is a competi-

tive salary vector.
(c) f1(F

′) makes an offer to a1(A
′) with salary s1 that is less than s∗

1 (F ′,A′). (If more, then
the offer will be accepted immediately, and f1(F

′) is worse off.) In this case, a1(A
′)

does not accept the offer immediately, and f1(F
′) cannot make any offer at this stage

due to the outstanding offer. In this subgame 〈f1(F
′), a1(A

′), s1〉), the on-equilibrium
path is described in the following way. f2(F

′) makes an offer to a1(A
′) with salary

max{s1, s
∗
1 (F ′\{f1(F

′)},A′), and a1(A
′) accepts the offer from f2(F

′) immediately.29

The rest of the game is played by F ′\{f2(F
′)} and A′\{a1(A

′)}, and the on-equilibrium
strategies described in the beginning of the proof applies to this subgame, too.
Given this, f1(F

′) is matched with a2(A
′) with salary s∗

1 (F ′\{f2(F
′)},A′\{a1(A

′)}) =
s∗

2 (F ′,A′), and it is apparently not beneficial to f1(F
′).

2. Firm fi(F
′) (i �= 1) also makes an offer to an applicant in addition to f1(F

′) making an offer
to a1(A

′). There are two cases.
(a) fi(F

′) makes an offer to aj (A
′) with j > i. If the salary is not more than s∗

j (F ′,A′),
then the offer is rejected eventually. Moreover, by then, fi(F

′)’s natural partner ai(A
′)

is no longer available. Thus, f ′(F ′) is worse off. If it is more than or equal to s∗
j (F ′,A′),

29 More precisely, f2(F ′) needs to make an offer to a1(A′) with a salary slightly higher than s′
1 (due to the tie-breaking

rule).
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then the offer is accepted eventually, but fi(F
′) is worse off than in the on-equilibrium

outcome.
(b) fi(F

′) makes an offer to aj (A
′) with j � i. In this case, this offer will be outstand-

ing in stage � (if the salary is more than s∗
j (F ′,A′) and if it is accepted, and fi(F

′)
is worse off). If i − j � 2 (thus, fi(F

′) is irrelevant in determining on-equilibrium
salary of aj (A

′)) fj (F
′) and fj+1(F

′) would compete for aj (A
′) potentially by offer-

ing s∗
j (F ′,A′) in expectation that the rejected fi(F

′) makes an offer to ai(A
′) following

the on-equilibrium strategy.30 Thus, firm fi(F
′)’s payoff is not affected by this irrele-

vant offer (except for a cost to make an additional offer). If i = j or i = j + 1, the
resulting salary structure could be affected. Consider the case i = j . If the offer is
above s∗

j (F ′,A′), then fi(F
′) is worse off. If the offer is less than that, then fi+1(F

′)
matches (or pays even more than that if fi+2(F

′) is willing to pay the salary that fi(F
′)

offers: in this case fi+2(F
′) is the real competitor for fi+1(F

′), so fi+1(F
′) needs to

pay more to get aj (A
′)), and aj (A

′) accepts fi+1(F
′)’s offer. As a result, fi(F

′) is
worse off. Lastly, consider the case i = j + 1. If the offered salary is more than or
equal to s∗

j (F ′,A′), then it is accepted, but fi(F
′) is worse off. If the salary is less than

s∗
j (F ′,A′), then the offer will be outstanding. At the stage when fj (F

′)’s turn comes,
fj (F

′) will offer exactly the same salary as fi(F
′) did, and aj (A

′) accepts fj (F
′)’s

offer. Being rejected, fi(F
′) will make an offer to ai(A

′) with salary s∗
i (F ′,A′), ending

up with the same payoff as on the equilibrium path (except for the cost for making an
additional offer).

Thus, in any case, a unilateral deviation from the equilibrium strategy does not improve firms’
payoff. Finally, we need to determine if an applicant has an incentive to deviate from her equi-
librium strategy unilaterally. First consider a1(A

′). Suppose that a1(A
′) gets an on-equilibrium

offer s∗
1 (F ′,A′) from f1(F

′), and suppose to the contrary that she rejects the offer. Then, since
f1(F

′) can no longer make an offer to a1(A
′), it goes after a2(A

′). Now, firm f2(F
′) will have

a chance to get a1(A
′), and its primary competitor is f3(A

′). Thus, f2(F
′) can offer a1(A

′)
a salary s′

21 = Y31(F
′,A′) − Y33(F

′,A′) + s∗
3 (F ′,A′). With this offer, f2(F

′) obtains payoff
(if accepted) Y21(F

′,A′)− s′
21 = Y21(F

′,A′)−Y31(F
′,A′)+Y33(F

′,A′)− s∗
3 (F ′,A′). By strict

supermodularity, this is higher than Y22(F
′,A′) − s∗

2 (F ′,A′) = Y22(F
′,A′) − Y32(F

′,A′) +
Y33(F

′,A′) − s∗
3 (F ′,A′). Thus, firm f2(F

′) indeed makes an offer to a1(A
′) instead of a2(A

′)
(if s′

21 would be accepted). Now, let us focus on a1(A
′)’s payoff. If a1(A

′) accepted the offer
from f1(F

′) then she gets s∗
1 (F ′,A′), and if she accepts the offer from a2(A

′), then she gets
s′

21 = Y31(F
′,A′) − Y33(F

′,A′) + s∗
3 (F ′,A′). However, by strict supermodularity and strict in-

creasingness, it is easy to see

s∗
1 (F ′,A′)
= Y21(F

′,A′) − Y22(F
′,A′) + s∗

2 (F ′,A′)
= Y21(F

′,A′) − Y22(F
′,A′) + Y32(F

′,A′) − Y33(F
′,A′) + s∗

3 (F ′,A′)
> Y31(F

′,A′) − Y33(F
′,A′) + Y32(F

′,A′) − Y33(F
′,A′) + s∗

3 (F ′,A′)
> Y31(F

′,A′) − Y33(F
′,A′) + s∗

3 (F ′,A′) = s′
21.

30 If fi(F
′) is better off by deviating at the stage of making an offer to ai (A

′), then she can also be better off by
deviation at that stage alone.
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This implies that a1(F
′,A′) does not have an incentive to reject an offer s∗

1 (F ′,A′) from
f1(F

′).31 It is easy to see that it does not make sense for aj (A
′) to reject an offer of a salary

more than or equal to s∗
j (F ′,A′). If an offer is made by fi(F

′) with i < j , and if the salary
is lower than s∗

j (F ′,A′), then there is no reason to hold such an offer. By waiting, she will re-
ceive an offer from fj (F

′,A′) with salary s∗
j (F ′,A′). Thus, rejecting such an offer immediately

does not alter her payoff. Finally, if an offer is made by fi(F
′) with i = j or j + 1 with salary

lower than s∗
j (F ′,A′), then she has no incentive to reject such an offer. Rejecting an offer is a

weakly dominated strategy since it reduces the number of relevant competitors. This proves that
applicants also have no incentive to deviate from the strategy profile unilaterally. �
Proposition 4. Suppose n � 2 and m � 2. In a multistage game, in any pure strategy stationary
Markov perfect equilibrium without any rejection on the equilibrium path, the equilibrium salary
vector satisfies s � s∗, and firms’ payoff vector satisfies u � u∗, where u∗

i = Yii − s∗
i for all

fi ∈ F .

Proof of Proposition 4. By induction. First, note that if |F | = 2, then equilibrium salary vector
s satisfies s � s∗, because there are only two equilibrium salary vectors: one is s∗ and the other is
s = (Y31, Y32) if |A| � 3 and s = (0,0) if |A| = 2 (see Example 3). In order to show that there is
no other equilibrium, we show that a non-assortative matching cannot be an equilibrium outcome
when |F | = 2. This can be seen as follows. If f1 is matched with a2, f2 must be matched with
a1. Since f1 does not counter the offer by f2 to a1, f1 must make its offer first. The salary
offer for this case is s2 = s∗

2 : s∗
2 = Y32 if m � 3 (s∗

2 = 0 otherwise). Once f1 makes an offer
to a2, then f2’s only rival is f3, so s1 = Y31 if m � 3 (s1 = 0 otherwise). In this allocation,
f1’s payoff is Y12 − Y32, while if f1 gets a1 with salary s∗

1 = Y21 − Y22 + Y32, its payoff is
Y11 − s∗

1 = Y11 − Y21 + Y22 − Y32. However, by subtracting the former from the latter, we have

Y11 − s∗
1 − (

Y12 − s∗
2

) = Y11 − Y21 + Y22 − Y32 − (Y12 − Y32)

= Y11 − Y12 − (Y21 − Y22)

> 0,

by strict supermodularity. Thus, there are only two equilibria with the assortative matching with
s � s∗, and we have u � u∗ in all equilibria.32 Thus, the induction hypothesis is satisfied when
|F | = 2.

Suppose that for all games (F,A) with |F | < k, all equilibria have s � s∗ and u � u∗.
Consider a game (F,A) with |F | = k. Suppose that there is an equilibrium without rejec-
tions on the equilibrium path in which aj receives sj > s∗

j . Then, there is a firm fi matched

with aj . Let (F ′,A′) be the set of active players when fi makes an offer to aj .33 There are
two cases: i = j or i �= j . First assume that i = j . Then, si > s∗

i , and there is a firm fi′ ∈ F ′
which has an incentive to make an offer to ai instead of its equilibrium partner, say, aj ′ . That
is, ui′ = Yi′i − si < Yi′i − s∗

i � u∗
i′ . Suppose that firm fi′ makes an offer to aj ′ with salary

31 Here, we assume that a1(A′) would accept an offer s′
21 from f2(F ′) in the case where she rejected an offer s∗

1 (F ′,A′)
from f1(F ′). It is easy to see if a1(A′) rejects this offer as well, then she would be even more worse off.
32 As is shown in Example 5, if |F | �= 2, a non-assortative matching can be an equilibrium.
33 Since there is no rejection on equilibrium path, firms that have made offers in the past will not be able to make offers.
Thus, F ′ can be considered as the set of firms that have not made offers.
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sj ′ = Yi′j ′ − Yi′i + si in the same stage that fi makes the offer to ai . This cannot be an equilib-
rium since both parties have incentives to reduce salaries. Thus, fi′ makes its offer in a later stage
with an active player. However, by the induction argument, when fi′ ∈ F ′\{fi} obtains ui′ � u∗

i′
in the subgame when fi′ makes an offer (the number of active players is less than k). This is a
contradiction. Second, assume i �= j . If ai ∈ A′, then fi can make an offer to ai instead of aj .
Since ui < Yij − s∗

j � u∗
i = Yii − s∗

i , then fi prefers making an offer to ai with s∗
i , if it were

accepted by ai . Thus, if fi chooses aj this means that fi ’s offer to ai with s∗
i would be countered

by some fi′ ∈ F ′. Such fi′ obtains payoff Yi′i − s∗
i � Yi′i′ − s∗

i′ = u∗
i′ . Since fi′ needs to have an

opportunity to make an counter offer, it does not make an offer to its equilibrium partner in the
same stage that fi makes an offer. By the induction hypothesis, ui′ � u∗

i′ , and the only possible
case for this is that Yi′i − s∗

i = Yi′i′ − s∗
i′ . This implies i′ = i + 1, and i < i′. However, then fi′

cannot make an acceptable counteroffer to ai . This is a contradiction. Thus, s � s∗ must hold.
Now, we show u � u∗. Since s � s∗, if there is fi with ui < u′

i , it must be matched with aj

with j > i. However, fi can make an offer to ai with s∗
i , which would be accepted by ai . This

is because if any other firm makes a counteroffer, then that firm’s payoff would be lower by the
induction hypothesis. This is a contradiction. Thus, we conclude s � s∗ and u � u∗ for (F,A)

with |F | = k.
By an induction argument, we complete the proof. �
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