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I. Introduction

The options markets provide information on mar-
ket expectations concerning the probability dis-
tribution of the underlying asset or instrument.
Option pricing models can be used to infer these
market expectations regarding the end-of-period
probability distribution of the underlying asset
or instrument and to estimate its parameter values
based on observed prices, because option prices
themselves are linked to pricing models featuring
assumed probability distributions.Wewill call this
an option-implied distribution. Black (1976) is a
widely used model for the options we price here.
Therefore, in our application the benchmarkmodel
is the Black model. The distribution assumed in
the Black model is the lognormal distribution.
For the instruments we will be using,1 prices are
quoted in terms of the ex ante standard deviation
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* This paper is based on chapter 3 of the dissertation of K. K.
Dutta at the University of Pennsylvania. The views expressed
here are ours and do not necessarily reflect official positions of
the Federal Reserve Bank of Boston or the Federal Reserve Sys-
tem. We have benefited from discussions with John Hull, Craig
Merrill, Algis Remeza, and Vassilis Polimenis.
1. In the foreign exchange and interest rate markets, an implied

volatility is quoted, whereas in the equity market actual price is
quoted. The model used in both cases is the Black-Scholes model,
which is slightly different from the Black (1976) model.

Return distributions in
general and interest
rates in particular have
been observed to
exhibit skewness and
kurtosis that cannot
be explained by
the ( log)normal
distribution. Using
g-and-h distribution we
derived a closed-form
option pricing formula
for pricing European
options. We measured
its performance using
interest rate cap data
and compared it with
the option prices based
on the lognormal,
Burr-3, Weibull, and
GB2 distributions.
We observed that the
g-and-h distribution
exhibited a high degree
of accuracy in pricing
options, much better
than those other
distributions in
extracting probabilistic
information from the
option market.



(known as the implied volatility) of the lognormal distribution. Under the
Black model, one obtains different implied volatilities for different strike
prices even when the option expiry date is the same, giving rise to the so-
called volatility smile.
Dutta and Babbel (2002) observed that 1-month and 3-month London

Inter Bank Offer Rate (LIBOR) do not conform to a lognormal distri-
bution and the skewness and kurtosis in the rates can be modeled effec-
tively by some ‘‘flexible’’ leptokurtic distribution. Hawkins, Rubinstein,
and Daniels (1996); Sherrick, Garcia, and Tirupattur (1996); Jondeau and
Rockinger (2000); Navatte and Villa (2000); and Bhara (2001) are
examples of some of the studies where the implied lognormal distribu-
tional assumption of the underlying asset or instrument was empirically
rejected. After Rubinstein (1994) made a powerful argument for using
general distributions in pricing the options, some efforts were made to
recover the probabilistic information implied by option prices using
general distributions. In this effort, GB2 (McDonald and Bookstaber
1991), Burr type 3 (hereafter, Burr-3, see Sherrick et al. 1996), and
Weibull (Savickas 2001) are some of the distributions used to price
options on various assets. In these and other studies, GB2 (McDonald
and Bookstaber 1991) was the most general distribution and the very
first attempt to price an option using a general distribution. However,
only one of these attempts has been in the area of interest rate options.
The closest was Rebonato (1999), who used GB2 to price a Deutschemark
(DEM) cap. However, Rebonato offered no comparison of pricing ac-
curacy with other distributional assumptions.
Guided by the evidence of the distributional properties of the 1-month

and 3-month LIBOR as noted in Dutta and Babbel (2002), we price
interest rate options on this instrument with a g-and-h distribution and
compare it with other (lognormal,Weibull, Burr-3, andGB2) distributional
assumptions in extracting the probability distribution from the option
market. We consider here the European interest rate options. Our choice
is influenced by the size and the nature of the products we use. Because
the U.S. dollar interest rate cap is one of the most liquid interest rate op-
tions available on LIBOR, we use it to evaluate the performance of our
distributional assumptions.
First, we develop the necessary framework for option pricing. Sec-

ond, we price interest rate caplets under the assumption of g-and-h and
other distributions. Finally, we will compare the performance of several
models in extracting the implied distribution.

II. Framework for Option Prices

To price interest rate options based on different distributional assump-
tions, we first develop the necessary framework for option pricing.
Babbel andMerrill (1996), Hull (2000), and Brigo andMercurio (2001)
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are among the sources that provide comprehensive coverage on this
subject.
Under general asset pricing theory with the no-arbitrage condition,

the current price of an asset is equal to the present value of its expected
payoffs discounted at an appropriate rate. The expectation can be made
under any distributional assumption. Other than that the distribution
needs to assume positive values,2 no known economic theory can be
used to justify any particular assumption. We start with Black’s model
and showwhy it is theoretically consistent with the general asset pricing
theory in pricing a wide variety of European interest rate options.
Black’smodel calculates the expected payoff from the option assuming

1. The underlying variable X is lognormally distributed at the expiry of the
option with standard deviation of s

ffiffiffiffi
T

p
, where T is the time to maturity.

2. The expected value of X at the maturity of the option is the forward
value (F0) of X at time 0, the valuation date.3

This expected payoff is then discounted by the T-duration risk-free rate at
time zero. If we are pricing the call option, then the payoff from the option is
max(XT � c, 0) at time T, where XT is the value of X at time T and c is the
strike rate of the option. The price of the call option is

e�rT

Z 1

0

maxðXT � c; 0Þ f ðXT ÞdðXT Þ; ð1Þ

where f (�) is the density function of the lognormal distribution in
Black’s model. By evaluating the integral in (1), we obtain4

e�rT ½F0Nðd1Þ � cNðd2Þ�; ð2Þ

where N(�) is the cumulative distribution function of the standard nor-
mal, E(XT)¼ F0, d1 ¼ ½lnðF0=cÞ þ s2T=2�=s

ffiffiffiffi
T

p
; and d2 ¼ d1 � s

ffiffiffiffi
T

p
:

In this derivation we assume that the interest rate is either constant or
deterministic. Therefore, when the interest rate is stochastic, Black’s
model may appear to have made approximations in terms of (1) the
behavior of the interest rate and (2) assuming that E(XT)¼ F0. In a risk-
neutral world, where the interest rate is stochastic, E(XT) ¼ F̃0 6¼ F0,
where F̃0 is the future price of X at time 0. However, as shown in chap-
ters 19 and 20 of Hull (2000), using the equivalent martingale measure
in a world that is forward risk neutral with respect to a zero-coupon bond
maturing at time T, the two approximations have precisely offsetting

2. If the underlying instrument is return on an asset, then the distribution can assume
negative values. Some exotic options are written on asset returns.
3. The valuation date and time 0 are used interchangeably.
4. Chapter 20 in Hull (2000) gives the computation for the integral.

843Information from Interest Rate Options Prices



effects when Black’s model is applied to value bond options, interest rate
caps/floors, and swaptions. Therefore, when valuing these instruments,
Black’smodel indeed has a strong theoretical basis and ensures arbitrage-
free pricing.
The lognormal density assumption in Black’s model is an arbitrary

assumption. On the contrary, strong evidence shows that the underlying
asset or instrument is often not lognormally distributed. Therefore, we
replace the lognormal assumption in Black’s approach with various dis-
tributions and test our assumptions. We use interest rate caplets to es-
timate and evaluate the parameters.
The interest rate cap is one of the most liquid interest rate options traded

in the market.It comprises a portfolio of caplets. A caplet is an interest rate
call option on short-term interest rates whose strike rate is the cap rate. A
caplet’s payoff is based on the level of the reference interest rate on the
date of the caplet’s maturity, but the payment is generally made in arrears.5

The price of the cap is equal to sum of the prices of the caplets.
Suppose a cap is written on the principal amount P (known also as

notional ), with strike rate c, and for a total duration of time T (known as
tenor). Let the entire time period T be partitioned into t0, t1, t2, . . . , tn,
tn+1 ¼ T . The intermediate points in the partition are known as the reset
dates. Suppose the interest rates on t0, t1, t2, . . . , tn are r1, r2, . . . , rn . The
term ri (1 � i � n) are the interest rates for the periods between ti and
ti+1(1 � i � n � 1) observed at time ti. The caps are priced in such a
way that there is no loss or gain at time t0. For each period ti to ti+1, there
is a caplet that matures at time tI and settles (transactions made) at time
ti+1. The amount transacted at ti+1 is Pdti max(ri � c, 0), where dti is the
compounding factor6 for the period from ti to ti+1. Since the transaction
is not made until the next period, in pricing a caplet, the discounting
factor in equation (1) is adjusted accordingly. The market price of a cap
(and, hence, a caplet) is quoted on a notional of one currency unit.
Therefore, the price of a caplet valued at time t0, maturing at time ti, and
settling at time ti+1, on a notional value of one currency unit, is

e�rtiþ1dti

Z 1

0

maxðXti � c; 0Þ f ðXtiÞdðXtiÞ; ð3Þ

where Xti is the interest rate at ti, f (�) is the density function (not nec-
essarily lognormal) of Xti , and r is the risk-free rate for the period
between t0 and ti+1. Also, as before, we assume our economy is forward
risk neutral. Therefore,

EðXtiÞ ¼ Ft0i ; ð4Þ

where Ft0i is the forward interest rate for the period from t0 to ti at time t0.

5. Not all caps pay in arrears. See Merrill and Babbel (1996).
6. Interest rates are quoted on an annualized basis.
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As we have seen, the interest rate caplets are essentially an interest
rate option for the period from t0 to ti and one of the most liquid options
on interest rates. Therefore, to either extract the probabilistic informa-
tion or test the distributional assumptions of the short-term interest rate,
the caplets are the best instrument. In particular, we use the U.S. dollar
caplets for our analysis here. With this necessary framework developed
in this section, we can price the option under the different distributional
assumptions.

III. Option Pricing under Different Distributional Assumptions

Since the main objective of this work is to recover the probabilistic in-
formation of the short rate from the interest-rate option market, we first
price the options under different distributional assumptions. We provide
in detail the option pricing formula using the g-and-h distribution, since
we know of no published work where this has been done. For other
distributions, we refer to and adopt the pricing formulae given in pub-
lished works. A more-generalized treatment of valuation and risk man-
agement techniques across manymarkets and instruments is provided in
Dutta (2002).

A. Option Pricing with g-and-h Distribution

The g-and-h distribution was introduced by Tukey (1977). Martinez
and Iglewicz (1984), Hoaglin (1985a, b), Badrinath and Chatterjee (1988,
1991), Mills (1995), and Dutta and Babbel (2002) also studied the prop-
erties of this distribution.Badrinath and Chatterjee and Mills used the
g-and-h distribution to model the return on equity indices in various
markets, whereas Dutta and Babbel used it to model LIBOR rates.
Tukey introduced a family of distributions by transforming the standard
normal variable Z to

Yg;hðZÞ ¼ ðegZ � 1Þ expðhZ
2=2Þ

g
;

where g and h are any real numbers. By introducing location (A) and
scale (B) parameters, the g-and-h distribution has four parameters in
the following form:

Xg;hðZÞ ¼ Aþ BðegZ � 1Þ expðhZ
2=2Þ

g
¼ Aþ Bg;h: ð5Þ

Whenh¼ 0, theg-and-hdistribution reduces toXg,0(Z )¼A +B[(egZ � 1)/g],
which is also known as the g distribution. The g parameter is responsible
for the skewness of the g-and-h distribution. The g distribution exhibits
skewness but no kurtosis.
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Similarly when g ¼ 0, the g-and-h distribution reduces to

X0;hðZ Þ ¼ Aþ BZ expðhZ 2=2Þ ¼ Aþ BY0;h; ð6Þ

which is also known as the h distribution. The h parameter in g-and-
h distribution is responsible for its kurtosis. The h distribution has fat tails
(kurtosis) but no skewness. As noted in Martinez and Iglewicz (1984),
many commonly used distributions can be derived as a special case of the
g-and-h distribution.
To price the call option using a g-and-h distribution, we need to

evaluate the integral in step (1) with the g-and-h density in (5). The
integral in step (1) is equivalent to E{max[(Xr � c), 0]}. If Xr follows a
g-and-h distribution, then XT ¼ a + [b(egZ � 1)ehZ

2/2/g], where Z is a
standard normal distribution. Therefore,

Efmax½ðXT � cÞ; 0�g ¼ 1ffiffiffiffiffiffi
2p

p
Z1
c

�
aþ bðegZ � 1ÞehZ2=2

g
� c

�
e�Z2=2dZ: ð7Þ

Equation (7) can be split into three parts as follows.

1.
1ffiffiffiffiffiffi
2p

p
Z1
c

ða� cÞe�Z 2=2dZ ¼ ða� cÞ½1� NðcÞ�: ð8Þ

2.
�1ffiffiffiffiffiffi
2p

p
Z1
c

b
e�ð1�hÞZ 2=2

g
dZ: ð9Þ

Transforming Z ! y=
ffiffiffiffiffiffiffiffiffiffiffi
1� h

p
, the integral in (9) becomes

1ffiffiffiffiffiffi
2p

p
Z1

cð
ffiffiffiffiffiffi
1�h

p
Þ

b
e�y2=2

gð
ffiffiffiffiffiffiffiffiffiffiffi
1� h

p
Þ
dy ¼ �b

gð
ffiffiffiffiffiffiffiffiffiffiffi
1� h

p
Þ
1� Nðc

ffiffiffiffiffiffiffiffiffiffiffi
1� h

p
Þ

h i
: ð10Þ

3.
b

g
ffiffiffiffiffiffi
2p

p
Z1
c

e�f½ð1�hÞZ2�=2�gZgdZ: ð11Þ

Completing the square in the exponent of e in (11), we have

b

g
ffiffiffiffiffiffi
2p

p eg
2=2ð1�hÞ

Z1
c

e
� 1
2

h
ð
ffiffiffiffiffiffi
1�h

p
ÞZ� gffiffiffiffiffiffi

1�h
p

i2
dZ: ð12Þ
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By making the transformation y !
ffiffiffiffiffiffiffiffiffiffiffi
1� h

p
Z � g=

ffiffiffiffiffiffiffiffiffiffiffi
1� h

p
to the inte-

gral in (12), we have

b

g
ffiffiffiffiffiffiffiffiffiffiffi
1� h

p eg
2=2ð1�hÞ 1ffiffiffiffiffiffi

2p
p

Z1
ð
ffiffiffiffiffiffi
1�h

p
Þc�g=ð

ffiffiffiffiffiffi
1�h

p
Þ

e�
1
2
ðZÞ2dZ

¼ b

g
ffiffiffiffiffiffiffiffiffiffiffi
1� h

p eg
2=2ð1�hÞ 1� N

ffiffiffiffiffiffiffiffiffiffiffi
1� h

p� �
c� g

. ffiffiffiffiffiffiffiffiffiffiffi
1� h

p� �h in o
: ð13Þ

Combining equations (8), (10), and (13), we get the call price using the
g-and-h distribution as

e�rTEfmax½ðXT � cÞ; 0�g ¼ e�rT
n
ða� cÞ½1� NðcÞ�

� b

gð
ffiffiffiffiffiffiffiffiffiffiffi
1� h

p
Þ

1� N
�
c
ffiffiffiffiffiffiffiffiffiffiffi
1� h

p �h i

þ b

g
ffiffiffiffiffiffiffiffiffiffiffi
1� h

p e g 2=2ð1�hÞ
h
1� N

� ffiffiffiffiffiffiffiffiffiffiffi
1� h

p �
c� g=

� ffiffiffiffiffiffiffiffiffiffiffi
1� h

p �io
; ð14Þ

where

EðXT Þ ¼ aþ bðeg 2=2ð1�hÞ � 1Þ
g
ffiffiffiffiffiffiffiffiffiffiffi
1� h

p ¼ F0: ð15Þ

We can eliminate a parameter between equations (14) and (15) and
express equation (14) in terms of F0, the forward price of XT on the
valuation date.
Similarly we price the put option as follows:

Efmax½ð p� XT Þ; 0�g ¼ 1ffiffiffiffiffiffi
2p

p
Zp
�1

 
p� aþ bðegZ � 1ÞehZ 2=2

g

!
e�Z 2=2dZ;

where p is the strike price for a put. Following the steps as before, we get
the price of the put as

e�rT ½ð p� aÞNð pÞ þ b

gð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� hÞ

p Nð p
ffiffiffiffiffiffiffiffiffiffiffi
1� h

p
Þ�

�e�rT ð p� aÞNð pÞ þ b

gð
ffiffiffiffiffiffiffiffiffiffiffi
1� h

p
Þ
Nð p

ffiffiffiffiffiffiffiffiffiffiffi
1� h

p
Þ

(

� b

g
ffiffiffiffiffiffiffiffiffiffiffi
1� h

p eg
2=2ð1�hÞ N

ffiffiffiffiffiffiffiffiffiffiffi
1� h

p� �
p� g

. ffiffiffiffiffiffiffiffiffiffiffi
1� h

p� �� �h i)
: ð16Þ
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Putting p ¼ c ¼ X and subtracting (16) from (14), we get

e�rT ðF0 � X Þ: ð17Þ

From step (17), we conclude that our option prices using the g-and-
h distribution preserve put-call parity, a necessary relationship to validate
any option pricing formula. To price a caplet, wemultiply the call price in
(14) with dt0 , the compounding factor.

B. Option Pricing with Generalized Beta Distribution of the Second
Kind (GB2)

The generalized beta distribution of the second kind (GB2), like the
g-and-h distribution, can accommodate a wide variety of tail thick-
nesses and permits skewness as well. Bookstaber and McDonald (1987),
McDonald and Bookstaber (1991), McDonald (1996), and McDonald
and Xu (1995) analyzed the properties and applications of the GB2
distribution in detail. Bookstaber and McDonald (1987) and McDonald
(1996) explored the possibility of modeling asset returns using GB2.
GB2 distribution is defined as

GB2ð y; a; b; p; qÞ ¼ jajyap�1

bapBð p; qÞ½1þ ð y=bÞa�pþq ; when y > 0;

¼ 0 otherwise:

ð18Þ

Here, B( p, q ) is a beta function. Like the g-and-h, GB2 is a four-
parameter distribution. Some of the useful properties of GB2 are sum-
marized next.
The cumulative distribution function of GB2 is given by7

X ð y; a; b; p; qÞ ¼ z p
2F1

½ p; 1� q; 1þ p; z�
pBð p; qÞ ; ð18aÞ

where z ¼ ( y/b)a/[1þ( y/b)a] and 1F2[a, b, c, d ] is a hypergeometric
function.8 Bookstaber and McDonald (1987) noted that many com-
monly used distributions can also be derived as a special case of GB2.
McDonald and Bookstaber (1991) developed a method to price op-

tions using the GB2 distribution. The method adopted by McDonald is
based on normalized incomplete moments.The hth normalized incomplete
moment of a distribution is defined as jð y; hÞ ¼

R y

0
shf ðsÞds

� �
=EðYhÞ.

The complement of the normalized incomplete moment is j̄ ¼ 1� j.
From the density function of GB2, we can infer that computing the
option prices using the expression in (1) is quite cumbersome.

7. For the derivation, see McDonald and Xu (1995) and McDonald (1996).
8. Hypergeometric is a special function. Reference for such functions is Abramowitz and

Stegun (1972).
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Rebonato (1999) used the method developed by McDonald and
computed the call option price9 based on GB2, which is equal to

e�rT

X ðb=X Þaq 1F2½q� 1=a; pþ q; 1þ q� 1=a;�ðb=X Þa�
ðq� 1=aÞBð p; qÞ �

X ðb=X Þaq 1F2½q; pþ q; 1þ q;�ðb=X Þa�
qBð p; qÞ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
; ð19Þ

where X is the strike rate and 1F2[ j, k, l, m] is the hypergeometric
function. Multiplying the compounding factor as before, we get the
price of the caplet. The call price given in (19) is slightly different from
the one given in Rebonato (1999). Rebonato assumed a zero-interest-
rate economy for discounting purposes, which is not a realistic as-
sumption. As before, the following condition should also hold to satisfy
the risk neutrality of the forward prices:

EðXT Þ ¼
bBð pþ 1=a; q� 1=aÞ

Bð p; qÞ ¼ F0: ð20Þ

Using equations (19) and (20), we can eliminate one parameter out of
the four parameters of the GB2 distribution and express the call price in
(19) in terms of F0. Rebonato equated the first and second moments of
the GB2 distribution with those of the lognormal and called it an equiva-
lent volatility. By doing so, one can eliminate one more parameter of
GB2 in the option price given in (19). There is no known empirical or
economic justification for this approach. In that assumption, one would
give up the flexibility of the distribution.

C. Option Pricing with Other Distributions

We also use Burr-3 and the Weibull distributions to compare the option
prices based on g-and-h and GB2 distributions.

Burr-3 distribution. The Burr-3 distribution is a special case of the
GB2 distribution (Bookstaber and McDonald 1987). When the param-
eter q = 1 in (18), we have the Burr-3 distribution:

Burr3ð y; a; b; pÞ ¼ jaj yap�1

bapBð p; 1Þ½1þ ð y=bÞa�pþ1
;

when y> 0 and 0 otherwise. Therefore, Burr-3 is a distribution with
three parameters. Sherrick et al. (1996) used it to price options on

9. For the price of a put. see Rebonato (1999).
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soybean futures. Even though Burr-3 has received limited attention in
modeling asset returns, it has been found to be useful in describing the
loss distribution in the insurance industry.
Since Burr-3 is a special case of GB2 (q ¼ 1), therefore substituting

for the value of q in (19) and (20), we get the price of a call option (and
caplet) using the Burr-3 distribution. The option price associated with
the Burr-3 distribution has only two free parameters.

Weibull distribution. The Weibull distribution can also be derived as a
limiting case from g-and-h as well as fromGB2. TheWeibull distribution
belongs to the family of distributions known as extreme-value distribu-
tions. The density function of the Weibull distribution is given by

f ðxÞ ¼ abxb�1e�axb ;

where a> 0, b> 0, and x> 0. Weibull is therefore a distribution with
two parameters. Savickas (2001) describes the properties of the Weibull
distribution and compares it with the lognormal distribution.
Savickas developed the option price under the Weibull distribution

using (1). Substituting theWeibull density in (1) we obtain the price of a
call option:

e�rT

Z1
c

ðXT � cÞabX b�1
T eaX

b
T dXT : ð21Þ

After simplification, equation (21) reduces to

e�rT Gð1þ 1=bÞ
a1=b 1� Gwð1þ 1=bÞ

Gð1þ 1=bÞ

� 	
� ce�w


 �
; ð22Þ

where w ¼ acb and Gw(1 + 1/b) ¼
R1
0

x1=be�xdx is the incomplete
gamma function (see Abramowitz and Stegun 1972). Substituting
E(X ) ¼ [G(1 þ 1/b)]/a1=b ¼ F0 in (22), we have

e�rT F0 1� Gwð1þ 1=bÞ
Gð1þ 1=bÞ

� 	
� ce�w


 �
: ð23Þ

As before, multiplying (23) by the compounding factor, we get the price
of the caplet using the Weibull distribution.
We now have all the caplet prices we need to test the distributional

assumptions implied by option prices. In the next section, we first es-
timate the parameter, then test the assumptions with the caplet data.
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IV. Tests of the Distributional Assumptions

To test the distributional assumption, we first need to estimate the pa-
rameters of the distribution. The caplet prices calculated in an earlier sec-
tion are used to estimate the parameters. The model price of the caplet is
Ei
D where D is the set of parameters to be estimated. The term Oi is the

market prices of the caplet. The term n is the total number of caplets used
to estimate the parameters. Then the best estimate of D is Dmin, the pa-
rameter set that minimizes

Xn
i¼1

ðOi � Ei
DÞ

2 ð24Þ

subject to E(XT) ¼ F0 and other parameter constraints specific to a par-
ticular distribution.
The optimization problem described in (24) is a nonlinear optimization

problem, which adds several complexities in estimating the parameters.
We encountered situations where the solution did not exist. We used the
optimizer (solver)10 in Microsoft Excel to solve the problems.

A. Data Description

According to the International Swaps and Derivatives Association, the
total notional principal amount of over-the-counter U.S. dollar interest
rate options, such as caps/floors and swaptions, exceeded $6 trillion
at the end of 2000. This amount was more than 50 times the $120 billion
in combined notional principal of all the options on Treasury notes and
bond futures traded at the Chicago Board of Trade. Therefore, caps/
floors are one of the most liquid interest rate options that can be used to
infer an implied probability distribution. As we explained earlier, the
liquidity of the option is important for it to be used in recovering the
probability distribution.
The U.S. dollar caps are quoted in basis points.11 The price of the

contract is multiplied by the notional principal amount to give the dollar
value of the contract. Since the caps are over-the-counter traded con-
tracts, the data relating to caps are available only from the broker/dealer
or market maker. Most of the available data are quoted on an at-the-
money forward basis, which means that, on any trading day and for one
specific tenor, the quote of only one strike is available. We noted ear-
lier that, as we move away (in either direction) from an at-the-money
forward, the option starts exhibiting the volatility smiles. The trading

10. The solver was enhanced by the Premium Solver Platform, software obtained from the
Frontline Systems. We tried to solve the optimization problems by the MATLAB optimizer as
well. We found that the Premium Solver Platform performed better than the MATLAB for our
application.
11. The prices are normally quoted in terms of implied volatilities. However, we obtained

them in basis points.

851Information from Interest Rate Options Prices



strategy of caps as well as of many other interest rate instruments is
based on this volatility smile.
We obtained end-of-the-day closing prices for U.S dollar caps of dif-

ferent strikes and tenors from amajor broker/dealer andmarket maker in
interest rate caps/floors and swaptions. The tenors of the cap were of six
different maturities (2, 3, 4, 5, 6, and 7 years) and of eight different
strikes (5, 5.5, 6, 6.5, 7, 7.5, and 8%). However, caps at all these strikes
were not always quoted for each of the maturities. The sample period
consisted of 141 trading days12 of daily data from October 23, 2000, to
September 19, 2001. In total, 3,769 contracts were used for the esti-
mation of the parameters. The liquidity of the contracts on a given day
varied according to the strikes, maturities, and the 3-month-LIBOR rate
on that day. Deep in-the-money as well as deep out-of-the-money caps
exhibited less liquidity. We have disregarded any quote with an open
interest less than 10. All the caps with strike 8.5% were disregarded for
having open interest less than 10. Also, options with short maturities
(less than 3 years) exhibited liquidity only for at-the-money-forward
strikes.Therefore, even though we could obtain the data for a 1-year cap,
we chose not to use it due to the lack of its liquidity. Table 1 gives the
basic statistics of the cap data we used. From the cap prices we obtained
the caplet prices.13 For the purpose of computing these caplet prices
we needed the forward (and discount) curve(s). We used 1-, 3-, 6-, and
12-month LIBOR, 2-, 3-, 5-, 7-, and 10-year U.S. dollar interest rate
swap data to construct the forward curve (and discount curve) for each
trading day. This discount curve was used in our option valuation models
as well. Using these caplet prices we estimated the parameters of the im-
plied distributions for each of the option models discussed earlier. We
used the caplets that matured at the end of the ninth month and settled at
the end of twelfth month from the beginning of the cap.

B. The Testing Methodology and Model Evaluation

The testing methodologywe adopt here is similar to the ones in Jackwerth
and Rubinstein (1995); Buhler et al. (1999); Driessen, Klaassen, and
Melenbert (2000); Gupta and Subrahmanyam (2001); and Savickas
(2001). Caplets were classified based on tenors. For each tenor, the
parameters of the distributions were estimated using the methodology
outlined in (24). The significance of this classification lies in testing the
stability of the parameters and their out-of-sample performance.
Using the estimated parameters, the caplet prices were computed

under each of the distributional assumptions. The (percentage) errors
between the market and the model prices (both relative and absolute)

12. There were approximately 252 trading days. However, on approximately 100 trading
days, there was no noticeable price movement from the previous day. In our analysis, we
used distinct prices to estimate the parameters.
13. We used FINCAD tools to compute the prices.
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TABLE 1 U.S. Dollar Interest Rate Caps

Years of Tenure

2 3 4 5 6 7 2 3 4 5 6 7

5% Strike 5.5% Strike

Mean 54 139 235 — — — 36 110 201 291 381 478
Max 81 187 252 — — — 61 143 249 368 423 517
Min 33 120 228 — — — 20 79 157 241 339 433
SD 12 16 9 — — — 10 17 23 27 25 26
25%
percentile 44 126 230 — — — 29 96 182 272 360 458

75%
percentile 64 148 239 — — — 43 122 219 306 403 504

Median 54 136 231 — — — 36 109 197 286 379 482
Count 94 40 11 — — — 119 119 101 64 34 17

6% Strike 6.5% Strike

Mean 22 76 148 232 320 410 27 67 109 167 232 308
Max 57 111 194 300 404 500 53 113 173 242 303 384
Min 12 53 113 179 252 332 9 32 73 125 182 248
SD 8 14 22 30 39 43 17 29 28 30 32 35
25%
percentile 16 64 127 206 288 370 13 45 87 151 217 288

75%
percentile 25 85 168 258 355 441 45 93 124 180 246 318

Median 20 73 143 229 320 407 20 52 101 157 223 306
Count 124 124 124 124 123 120 44 42 34 32 31 31

7% Strike 7.5% Strike

Mean 9 36 78 132 191 253 7 25 56 99 146 202
Max 26 68 121 192 264 337 13 41 82 136 194 255
Min 2 15 44 86 131 182 2 8 27 58 94 138
SD 6 13 21 28 35 40 4 12 20 26 32 37
25%
percentile 5 27 61 111 165 229 3 14 38 76 121 175

75%
percentile 9 42 94 156 222 287 12 38 78 122 176 235

Median 6 32 75 131 189 250 7 28 62 98 146 194
Count 141 141 141 141 141 141 44 44 44 44 44 44

8% Strike 8.5% Strike

Mean 3 15 38 70 108 150 2 10 26 52 83 120
Max 11 27 57 99 147 195 6 18 40 72 107 50
Min 1 4 16 39 66 100 1 2 10 27 47 73
SD 2 6 12 17 23 27 1 5 11 16 21 24
25%
percentile 1 10 26 56 91 132 1 5 16 38 68 102

75%
percentile 3 20 49 86 130 175 3 14 35 66 101 142

Median 2 15 39 69 108 150 2 12 31 60 89 123
Count 138 141 141 141 141 141 44 44 44 44 44 44

Note.—This table presents the descriptive statistics of the U.S. dollar interest rate caps used to esti-
mate the parameters of the distributions. The prices of the contracts are expressed in basis points (1 bp =
0.01%). The total number of contracts used for the estimation purpose is 3,769.
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were computed. For each tenor, the average was computed by taking all
caplets across different strikes and for all the trading days in our sample.
Table 2 shows the average (percentage) errors (both absolute and rel-
ative) across different maturities for the option prices under various
distributional assumptions.
In addition to estimating the errors, the model performance was also

evaluated by the following statistical tests.

(i) The model price and market price are regressed by the following re-
gression equation:market� pricei ¼ bi0 þ bi1 þmodel priceþ "i, and
the values of the coefficients, standard errors, and the R2 are noted.

(ii) The correlation coefficients of the errors and percentage errors (both
relative and absolute) are computed among the different models and
for all maturities.

(iii) The basic statistics (mean, standard deviation, median, percentile, etc)
for the parameter estimates were obtained across all maturities.

TABLE 2 Forecast Errors (in Basis Points and Percentages) for the Lognormal,
g-and-h, GB2, Burr-3 and Weibull Distributions

Average Error Average Absolute Error

Model Tenor (Basis Points) % (Basis Points) %

Lognormal 2 yrs 3.459 �52.68 5.667 107.32
3 yrs 2.209 �67.46 4.694 114.75
4 yrs �.101 �443.35 3.851 476.44
5 yrs �.275 �563.64 3.225 593.35
6 yrs �.244 �532.79 2.832 562.78
7 yrs �.226 �533.82 2.566 564.03

GB2 2 yrs �.058 �12.16 .612 17.34
3 yrs �.050 �12.20 .507 16.90
4 yrs �.138 �47.23 .379 50.64
5 yrs �.099 �48.93 .258 51.75
6 yrs �.072 �41.51 .185 44.14
7 yrs �.056 �38.10 .136 40.54

g-and-h 2 yrs �.038 �4.35 .189 6.07
3 yrs �.034 �4.63 .159 6.02
4 yrs �.022 �8.57 .095 9.88
5 yrs �.015 �6.49 .052 7.61
6 yrs �.011 �4.91 .034 5.71
7 yrs �.008 �3.70 .023 4.62

Burr3 2 yrs 4.013 �17.36 5.047 74.09
3 yrs 3.030 �25.13 4.181 76.72
4 yrs 5.175 99.32 5.175 99.32
5 yrs .404 �333.31 2.360 359.85
6 yrs �.018 �364.67 2.092 387.03
7 yrs �.336 �397.67 1.903 416.91

Weibull 2 yrs 7.033 18.91 11.478 69.52
3 yrs 5.129 23.40 7.120 81.87
4 yrs 8.159 �12.77 4.035 109.61
5 yrs �1.012 �393.39 3.699 489.46
6 yrs �.923 �446.07 4.647 263.00
7 yrs .325 �276.73 2.948 516.22
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From table 2, we can see that, on the basis of both relative and absolute
errors, the g-and-h distribution exhibits the highest accuracy in extracting
the implied distribution. The minimum and maximum absolute average
errors obtained are 4.62% and 9.88%, respectively. The average percent-
age relative and absolute errors from using the g-and-h distribution are
significantly smaller than the errors from other distributions. Although
insignificant, the negative value of the average relative error (consistently
obtained across all maturities) indicates that g-and-h, on average, over-
priced the options.
The GB2 distribution showed the next best accuracy. However, on

a percentage basis, GB2 exhibited much higher inaccuracies than g-and-
h. In certain instances, the solution for (24) did not exist for the GB2
distribution. Therefore, in those instances, GB2 violated arbitrage-free
pricing. Like g-and-h, GB2 overpriced the options consistently but at much
higher differences than g-and-h. The minimum and maximum absolute
average errors were 16.9% and 51.75%, respectively. Figure 1 shows
graphically the relative errors for different maturities under different
distributions.
For other distributions (Burr-3, lognormal, and Weibull) the er-

rors were extremely high, indicating that the implied distribution is dif-
ferent from Burr-3, lognormal, and Weibull. Also, we observed that the
errors decreased from shorter maturities to longer maturities. One pos-
sible reason for this is that liquidity increased from shorter maturities to
longer maturities. We had more contracts to solve (24) for the longer
maturities than for the shorter maturities.
Tables 3 and 4 show the results of the regression statistic for g-and-

h and GB2 distributions, respectively. From the R2 column in the tables,
we conclude that there is a high degree of correlation between market
and model prices under the g-and-h distribution and in many instances
under the GB2 distribution as well. While we observed no value of R2

less than 82% for the g-and-h distribution, we observed several R2 val-
ues for GB2 less than 60%. For the Burr-3, lognormal, and Weibull dis-
tributions, we often observed very low correlations between market and
model prices (tables 5, 6, and 7).
Figure 2 shows the average values of the implied parameter estimates

of g-and-h for all trading days in our sample. We observed high vola-
tilities in the parameter estimates for g-and-h. This is consistent with the g-
and-h parameter estimates that Dutta and Babbel (2002) obtained using
the historical 1-month and 3-month-LIBOR data. Therefore, we observe
that both historical and implied estimates of the parameters of g-and-
h show high volatility. Similar observations were obtained for the GB2
distribution (fig. 3).
We observed a very high degree of inaccuracy between the model

and the market prices under the assumptions of Burr-3, lognormal, and
Weibull distributions. Table 8 shows the correlation coefficients of errors
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(a) 2-year maturity(b) 3-year maturity(c) 4-year maturity(d) 5-year maturity(a) 2-year maturity

Fig. 1—Model Errors
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TABLE 3 Regression Statistics, Options with g-and h Distribution:
Model vs. Market Price

Tenor Rate (%) a b R2 SE

2-year 5.0 �.0005 .9933 .99997 .0670
5.5 .0100 1.0158 .99871 .1983
6.0 .0241 1.0046 .99845 .1125
6.5 �.0007 .9995 .99959 .0316
7.0 �.0315 .8799 .92324 .1949
7.5 �.0007 .8941 .97227 .0490

3-year 5.0 �.0001 .9949 .99999 .0406
5.5 �.0011 1.0013 .99912 .1641
6.0 .0377 1.0138 .99705 .1554
6.5 �.0013 1.0025 .99918 .0485
7.0 .0091 .8923 .91629 .1567
7.5 �.0036 .8745 .95948 .0631

4-year 5.0 .0000 .9954 .99998 .0261
5.5 �.0020 .9973 .99980 .0974
6.0 .0264 1.0124 .99738 .1426
6.5 �.0006 1.0122 .99924 .0474
7.0 �.0295 .9635 .95649 .0948
7.5 �.0023 .8988 .98323 .0419

5-year 5.5 �.0002 .9976 .99997 .0417
6.0 .0069 1.0052 .99851 .1055
6.5 .0003 1.0093 .99971 .0293
7.0 .0714 .9376 .95701 .0767
7.5 �.0012 .9644 .99741 .0168
8.0 �.0002 .8609 .82012 .0472

6-year 5.5 .0000 .9980 .99998 .0277
6.0 .0002 1.0031 .99935 .0707
6.5 .0003 1.0089 .99988 .0187
7.0 .0836 .9358 .97203 .0569
7.5 �.0009 .9755 .99847 .0130
8.0 .0035 .8800 .88630 .0337

7-year 5.5 .0000 .9994 1.00000 .0078
6.0 �.0005 1.0010 .99992 .0258
6.5 �.0002 1.0085 .99990 .0172
7.0 .0607 .9533 .97822 .0456
7.5 �.0008 .9846 .99870 .0122
8.0 �.0151 .9881 .95997 .0189

Note.—This table summarizes the regression statistics of the regression between the option prices
calculated based on the model and the market price of the option using the following regression
equation: Market Price = a+b (Model Price) + error. The option prices are calculated under the
assumption of the g-and-h distribution at the expiry of the option.

860 Journal of Business



TABLE 4 Regression Statistics, Options with GB2 Distribution:
Model vs. Market Price

Tenor Rate (%) a b R2 SE

2-year 5.0 �.0011 .9762 .99998 .0520
5.5 .0747 1.0505 .99085 .5285
6.0 .0253 1.0431 .99635 .1728
6.5 �.0071 1.0328 .99669 .0893
7.0 .1947 .6251 .79395 .3193
7.5 .0043 .6691 .87344 .1046

3-year 5.0 �.0004 .9777 .99999 .0374
5.5 .0883 1.0029 .98872 .5880
6.0 .0595 1.0610 .99332 .2337
6.5 �.0048 1.0308 .99863 .0625
7.0 .3483 .6246 .81655 .2320
7.5 .0004 .6459 .88828 .1048

4-year 5.0 .0000 .9781 1.00000 .0100
5.5 .0085 .9903 .99779 .3259
6.0 .0579 1.0494 .99034 .2737
6.5 �.0034 1.0476 .99824 .0723
7.0 .4083 .6498 .82404 .1906
7.5 .0021 .6850 .91288 .0955

5-year 5.5 �.0003 .9853 .99998 .0336
6.0 .0445 1.0266 .98795 .3002
6.5 �.0009 1.0552 .99916 .0499
7.0 .5677 .6275 .75442 .1832
7.5 .0009 .7938 .97254 .0547
8.0 .0763 .3232 .57050 .0729

6-year 5.5 �.0002 .9854 .99998 .0254
6.0 .0256 1.0120 .99161 .2544
6.5 �.0008 1.0574 .99918 .0495
7.0 .5662 .6499 .78838 .1564
7.5 �.0033 .8466 .98917 .0347
8.0 .0871 .3294 .57349 .0653

7-year 5.5 .0000 .9857 .99998 .0198
6.0 .0106 1.0040 .99595 .1874
6.5 �.0011 1.0576 .99916 .0504
7.0 .4778 .7104 .83116 .1269
7.5 �.0032 .8504 .99204 .0303
8.0 .0655 .3935 .60675 .0593

Note.—This table summarizes the regression statistics of the regression between the option prices
calculated based on the model and the market price of the option using the following regression
equation: Market Price = a + b (Model Price) + error. The option prices were calculated under the
assumption of the GB2 distribution at the expiry of the option.
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TABLE 5 Regression Statistics, Options with Burr-3 Distribution:
Model vs. Market Price

Tenor Rate (%) a b R2 SE

2-year 5.0 .6140 2.3450 .9563 2.3746
5.5 1.8364 1.6358 .8275 2.2954
6.0 1.6249 1.1249 .6964 1.5758
6.5 .2012 .6965 .8834 .5302
7.0 .9715 .2915 .1832 .6358
7.5 .0086 .2276 .8424 .1167

3-year 5.0 .1023 2.6729 .9815 1.4858
5.5 1.7636 1.6540 .8427 2.1964
6.0 1.4936 1.1707 .7519 1.4244
6.5 .2215 .7392 .8429 .6695
7.0 1.3101 .1867 .1116 .5106
7.5 .0242 .2247 .7290 .1633

4-year 5.0 .0033 1,040.0682 .9975 .2946
5.5 .5670 727.1868 .9444 1.6325
6.0 1.3738 487.2378 .7962 1.2569
6.5 .1112 318.4974 .8229 .7253
7.0 2.0491 �25.0283 .0123 .4517
7.5 .0271 89.4768 .6053 .2032

5-year 5.5 .3332 1.9056 .9488 1.7394
6.0 1.3597 1.1479 .7895 1.2550
6.5 .1149 .7694 .8918 .5671
7.0 1.3312 .1560 .1851 .3337
7.5 .0385 .2451 .7862 .1527
8.0 .1825 .0456 .0500 .1084

6-year 5.5 .1095 2.0540 .9658 1.2119
6.0 1.2254 1.1535 .8110 1.2071
6.5 .0982 .7744 .9025 .5389
7.0 1.2992 .1438 .1886 .3063
7.5 .0387 .2494 .7986 .1497
8.0 .1602 .0475 .0686 .0965

7-year 5.5 .0331 2.2310 .9770 .7238
6.0 .9897 1.1761 .8482 1.1472
6.5 .0976 .7798 .9036 .5394
7.0 1.2529 .1349 .2003 .2761
7.5 .0375 .2565 .8156 .1456
8.0 .1328 .0518 .0905 .0902

Note.—This table summarizes the regression statistics of the regression between the option prices
calculated based on the model and the market price of the option using the following regression
equation: Market Price = a + b (Model Price) + error. The option prices were calculated under the
assumption of the Burr-3 distribution at the expiry of the option.
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TABLE 6 Regression Statistics, Options with Lognormal Distribution:
Model vs. Market Price

Tenor Rate (%) a b R2 SE

2-year 5.0 .119954 2.716572 .994050 .875937
5.5 1.148203 1.805696 .927341 1.489608
6.0 1.091202 1.060303 .898276 .912176
6.5 .169850 .826769 .903803 .481656
7.0 .390392 .272722 .652974 .414421
7.5 .014723 .170521 .798610 .131935

3-year 5.0 .011543 2.728297 .998902 .361917
5.5 1.025577 1.837937 .932937 1.433926
6.0 1.080353 1.081937 .894069 .930777
6.5 .176353 .863081 .878630 .588423
7.0 .753561 .208199 .565883 .356923
7.5 .030101 .165874 .698128 .172311

4-year 5.0 .000084 2.732758 .999966 .034790
5.5 .347975 1.927794 .971758 1.164011
6.0 2.066477 .961362 .761322 1.360259
6.5 .122611 .957015 .896325 .554900
7.0 1.059690 .153940 .482502 .326924
7.5 .036871 .187868 .716351 .172277

5-year 5.5 .045914 1.945380 .993612 .614218
6.0 3.119459 .879656 .618824 1.688711
6.5 .085347 1.170790 .927678 .463547
7.0 1.306191 .117218 .407656 .284515
7.5 .032117 .254855 .852192 .127000
8.0 .137309 .033437 .306676 .092636

6-year 5.5 .000386 1.933716 .999950 .046274
6.0 3.082462 .997222 .613880 1.725424
6.5 .030777 1.357933 .975705 .269068
7.0 1.291102 .121728 .399696 .263426
7.5 .023082 .299831 .887799 .111704
8.0 .142690 .031897 .265634 .085696

7-year 5.5 �.000089 1.945277 .999957 .031342
6.0 2.163677 1.309089 .717493 1.564987
6.5 .030656 1.359038 .975919 .269535
7.0 1.263013 .124614 .345216 .249856
7.5 .022653 .304669 .896671 .109017
8.0 .143189 .029764 .174864 .085872

Note.—This table summarizes the regression statistics of the regression between the option prices
calculated based on the model and the market price of the option using the following regression
equation: Market Price = a + b (Model Price) + error. The option prices were calculated under the
assumption of the lognormal distribution at the expiry of the option.
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TABLE 7 Regression Statistics, Options with Weibull Distribution:
Model vs. Market Price

Tenor Rate (%) a b R2 SE

2-year 5.0 15.8327 .3119 .03012 11.1834
5.5 12.7737 .1940 .01811 5.4759
6.0 7.5497 .2184 .02776 2.8200
6.5 .9439 .6867 .01690 1.5398
7.0 1.8395 .3356 .11415 .6621
7.5 .1516 .4036 .00761 .2929

3-year 5.0 5.8884 .6706 .11066 10.2994
5.5 12.8212 .1779 .01648 5.4913
6.0 7.6806 .1781 .01918 2.8322
6.5 1.0277 .6961 .01428 1.6769
7.0 1.8678 .2271 .08134 .5192
7.5 .1726 .2142 .00170 .3134

4-year 5.0 .9499 .8392 .36618 4.7312
5.5 10.7210 .3136 .03295 6.8113
6.0 7.5159 .1647 .02180 2.7538
6.5 .9128 .8214 .05244 1.6776
7.0 1.8171 .1780 .07469 .4372
7.5 .1764 .4383 .02309 .3197

5-year 5.5 6.4987 .5791 .06171 7.4441
6.0 7.4130 .1529 .01901 2.7091
6.5 .8842 .8138 .05335 1.6771
7.0 1.7988 .1472 .06562 .3573
7.5 .1899 .6177 .03778 .3240
8.0 .2577 .2222 .10756 .1051

6-year 5.5 .7098 .9447 .80429 2.8985
6.0 3.1581 .6313 .57707 1.8058
6.5 �.0005 1.0324 .99982 .0233
7.0 1.1980 .3331 .38971 .2656
7.5 �.0009 .8898 .98144 .0454
8.0 .1059 .4026 .52841 .0687

7-year 5.5 �.0001 .9902 .99999 .0113
6.0 1.0216 .8849 .85495 1.1214
6.5 �.0008 1.0333 .99977 .0262
7.0 .9413 .4350 .44510 .2300
7.5 �.0003 .8942 .98260 .0447
8.0 .2101 .0540 .04229 .0925

Note.—This table summarizes the regression statistics of the regression between the option prices
calculated based on the model and the market price of the option using the following regression
equation: Market Price = a + b (Model Price) + error. The option prices were calculated under the
assumption of the Weibull distribution at the expiry of the option.
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Fig. 2.—Implied parameter estimates for the g-and-h distribution. The figure shows the average estimates of the parameter values across all
maturities.
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Fig. 3.—Implied parameter estimates for the GB2 distribution. The figure shows the average estimates of the parameter values across all
maturities.
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between different distributional assumptions. From table 8, we can
see that there is positive correlation between the g-and-h and GB2 dis-
tributions. The highest and lowest correlation coefficients between these
two distributions are 0.69 and 0.45, respectively. With respect to the
g-and-h distribution, we observe virtually no correlations with the Burr-3
andWeibull distributions. For shorter maturities, the g-and-h distribution
shows negative correlation with the lognormal distribution, but at longer
maturities, the correlation coefficient is positive and of approximately the
same value as with the GB2.

V. Conclusion

Dutta and Babbel (2002) observed that the skewed and leptokurtic be-
havior ofLIBORcould bemodeled effectively by the g-and-h distribution.

TABLE 8 Summary of the Correlation of Errors among Distributions

Model

Tenor GB2 g-and-h Lognormal Burr-3 Weibull

2-year GB2 1 .69 �.55 �.69 �.54
g-and-h 1 �.56 �.43 �.38
Lognormal 1.0 .84 .63
Burr-3 1 .58
Weibull 1

3-year GB2 1 .59 �.58 �.60 �.78
g-and-h 1 �.07 �.06 �.31
Lognormal 1.0 .84 .47
Burr3 1 .52
Weibull 1

4-year GB2 1 .45 �.10 �.91 �.62
g-and-h 1 .18 �.29 �.16
Lognormal 1.0 .19 �.13
Burr3 1 .62
Weibull 1

5-year GB2 1 .59 .86 �.54 �.76
g-and-h 1 .50 �.12 �.47
Lognormal 1.0 �.62 �.76
Burr-3 1 .36
Weibull 1

6-year GB2 1 .65 .84 �.57 �.21
g-and-h 1 .56 �.18 �.16
Lognormal 1.0 �.59 �.24
Burr-3 1 .21
Weibull 1

7-year GB2 1 .45 .70 �.40 .11
g-and-h 1 .45 �.12 .15
Lognormal 1.0 �.44 .05
Burr-3 1 .04
Weibull 1

Note.—This table presents the summary of the correlation of errors (market_price � model price)
among the distributions we use to estimate the implied distribution. The time series of the error is
computed by adding the errors for all the options of different strikes on a given day.
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The estimates they made can be viewed as backward looking since it
was based on what actually happened in the past. The market’s ex-
pectation of the distributional properties of LIBOR can be extracted
from option prices. Here, we attempted to model the skewed and lep-
tokurtic behavior of the 3-month LIBOR data as implied by its option
prices. In that respect, the estimates made here could be thought of as
forward looking. We observed that the implied distribution of 3-month
LIBOR could be modeled very accurately with the g-and-h distribution.
Gupta and Subrahmanyam (2001) priced U.S. dollar caps using many
well-known term structure models and reported errors in many in-
stances of a higher magnitude than what we obtained using the simple
g-and-h distribution. In addition, the regression statistics along with the
correlation of errors with other distributions signify an extremely good
fit between the implied distribution of the 3-month LIBOR data and the
g-and-h distribution. Therefore, we can conclude that the market ex-
pected 3-month LIBOR to be skewed and leptokurtic, which can be
modeled by the g-and-h distribution with a high degree of accuracy.
The GB2 distribution is also a general skewed and leptokurtic distri-

bution, and we have every reason to believe that we could have modeled
the implied distribution with the GB2 just as accurately as with the
g-and-h distribution. The inaccuracy we observed in GB2-based prices
is probably due to the complexity involved in computing such prices, as
is evident from (19). Dutta and Babbel (2002) observed that the GB2
distribution is highly sensitive to its parameter values. Small changes in
the parameter values may result in large differences in the option prices.
The computational simplicity of the g-and-h distribution is definitely one
of the reasons for the accuracy we observed in its prices over the GB2
distribution. Rebonato (1999) reported very high degrees of accuracy in
cap (caplet) prices of the DEMcaplets using GB2. However, he reported
the result for only one trading day.14

Even though some authors reported great success in modeling skew-
ness and kurtosis by Burr-3 and Weibull, we did not observe a good fit
for our application. These distributions with a restricted number of free
parameters could not model the skewed and leptokurtic behavior of the
3-month LIBOR effectively. Based on the statistics observed, we con-
clude that the option implied distribution of the 3-month LIBOR is not
lognormal either. The ample data on 3-month LIBOR options led us to
focus on that tenor and instrument in our experiments. Neither in our
development of the model nor in our testing did we assume any par-
ticular economic properties of 3-month-LIBOR. Therefore, we strongly
believe that other short-rates can also be modeled effectively by the
g-and-h distribution.

14. Rebonato (1999) claimed to have obtained similar results for many other trading days.
It is not clear if the experiment was conducted for substantially longer periods like ours.
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